DEPARTMENT OF PHYSICS

PROGRAM OUTCOME

- **PO1**: Identify, formulate and solve the complex problems in the field of theoretical physics, condensed matter physics and electronics.
- **PO2:** Recognize the need for and have an ability to engage in lifelong learning and be able to demonstrate knowledge of contemporary issues.
- **PO3:** Plan, execute and report the results of a complex extended experiment or investigation, using appropriate methods to analyze data and to evaluate the level of its uncertainty
- **PO4:** Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- **PO5:** Communicate the in the scientific language effectively in oral and written form.
- **PO6:** Acquire basic knowledge, skills and attitudes necessary for adapting to a fast changing technological world and understand the technological development of computers

PROGRAMME SPECIFICATION

Programme Title	B.Sc. Physics
Pattern of Delivery	Full Time
Programme Length	3 Years

PROGRAMME SPECIFIC OUTCOMES

- **PSO1:** Understand the basic concepts of fundamentals of mechanics, properties of matter and electrodynamics
- **PSO2:** Understand the theoretical basis of quantum mechanics, relativistic physics, nuclear physics, optics, spectroscopy, solid state physics, astrophysics, statistical physics, photonics and thermodynamics
- **PSO3:** Understand and apply the concepts of electronics in the designing of different analog and digital circuits
- **PSO4:** Understand the basics of computer programming and numerical analysis
- PSO5: Apply and verify theoretical concepts through laboratory experiments

COURSE OUTCOME

Delivery Pattern	Paper	Paper Code	Outcome
First Semester	MECHANICS – I	PHY1 B01	 Understand and apply the basic concepts of Newtonian Mechanics to Physical System Understand and apply the basic idea of work- energy theorem to physical systems Understand and apply the rotational dynamics of rigid bodies
Second Semester	MECHANICS – II	РНҮ 2 ВО2	 Understand the features of non-inertial systems and fictitious forces Understand and analyze the features of central forces with respect to planetary forces Understand the basic ideas of Harmonic Oscillations Understand the analyze the basic concepts of wave motion
Third Semester	ELECTRODYNAMI CS I	РНҮЗВОЗ	 Understand and apply the fundamentals of vector calculus Understand and analyze the electrostatic properties of physical systems Understand the mechanism of electric field in matter. Understand and analyze the magnetic properties of physical systems Understand the mechanism of magnetic field in matter.
Fourth Semester	ELECTRODYNAMI CS II	РНҮ4В04	 Understand the basic concepts of electrodynamics Understand and analyze the properties of electromagnetic waves Understand the behavior of transient currents Understand the basic aspects of ac circuits Understand and apply electrical network theorems
Fourth Semester	PRACTICAL I	PHY4B05	 Apply and illustrate the concepts of properties of matter through experiments Apply and illustrate the concepts of electricity and magnetism through experiments Apply and illustrate the concepts of optics through experiments Apply and illustrate the principles of electronics through experiments
Fifth Semester	COMPUTATIONAL PHYSICS	PHY5B06	 Understand the Basics of Python programming Understand the applications of Python modules Understand the basic techniques of numerical analysis Understand and apply computational techniques to physical problems

			 Understand the particle properties of electromagnetic radiation
Fifth Semester	QUANTUM MECHANICS	PHY5B07	 Describe Rutherford – Bohr model of the atom Understand the wavelike properties of particles Understand and apply the Schrödinger equation to simple physical systems Apply the principles of wave mechanics to the
			Hydrogen atom
Fifth Semester	OPTICS	PHY5B08	 Understand the fundamentals of Fermat's principles and geometrical optics Understand and apply the basic ideas of interference of light Understand and apply the basic ideas of diffraction of light Understand the basics ideas of polarization of light Describe the basic principles of holography and fibre optics
Fifth Semester	ELECTRONICS (ANALOG & DIGITAL)	РНҮ5В09	 Understand the basic principles of rectifiers and dc power supplies Understand the principles of transistor Understand the working and designing of transistor amplifiers and oscillators Understand the basic operation of Op – Amp and its applications Understand the basics of digital electronics
Fifth Semester	NON CONVENTIONAL ENERGY SOURCES	PHY5D01(1)	 Understand the importance of non - conventional energy sources Understand basic aspects of solar energy Understand basic principles of wind energy conversion Understand the basic ideas of geothermal and biomass energy and recognize their merits and demerits Understand the basic ideas of oceans and chemical energy resources and recognize their merits and demerits
Sixth Semester	THERMODYNAMI CS	PHY6B10	 Understand the zero and first laws of thermodynamics Understand the thermodynamics description of the ideal gas Understand the second law of thermodynamics and its applications Understand the basic ideas of entropy Understand the concepts of thermodynamic potentials and phase transitions
Sixth Semester	STATISTICAL PHYSICS, SOLID STATE PHYSICS, SPECTROSCOPY &	PHY6B11	 Understand the basic principles of statistical physics and its applications Understand the basic aspects of crystallography in solid state physics

	PHOTONIC		 Understand the basic elements of spectroscopy Understand the basics ideas of microwave and infrared spectroscopy Understand the fundamental ideas of photonics
Sixth Semester	NUCLEAR PHYSICS AND PARTICLE PHYSICS	PHY6B12	 Understand the basic aspects of nuclear structure and fundamentals of radioactivity Describe the different types of nuclear reactions and their applications Understand the principle and working of particle detectors Describe the principle and working of particle accelerators Understand the basic principles of elementary particle physics
Sixth Semester	RELATIVISTIC MECHANICS AND ASTROPHYSICS	PHY6B13	 Understand the fundamental ideas of special relativity Understand the basic concepts of general relativity and cosmology Understand the basic techniques used in astronomy Describe the evolution and death of stars Describe the structure and classification of galaxies
Sixth Semester	NANOSCIENCE AND TECHNOLOGY	PHY6B14 (EL2)	 Understand the elementary concepts of nanoscience Understand the electrical transport mechanisms in nanostructures Understand the applications of quantum mechanics in nanoscience Understand the fabrication and characterization techniques of nanomaterials Enumerate the different applications of nanotechnology
Sixth Semester	PRACTICAL II	PHY6B15	 Apply and illustrate the concepts of properties of matter through experiments Apply and illustrate the concepts of electricity and magnetism through experiments Apply and illustrate the concepts of optics and spectroscopy through experiments Apply and illustrate the principles of heat through experiments
Sixth Semester	PRACTICAL III	PHY6B16	 Apply and illustrate the principles of semiconductor diode and transistor through experiments Apply and illustrate the principles of transistor amplifier and oscillator through experiments Apply and illustrate the principles of digital electronics through experiments Analyze and apply computational techniques in Python programming

Sixth Semester	PROJECT	PHY6B17(P)	 Understand research methodology Understand and formulate a research project Design and implement a research project Identify and enumerate the scope and limitations of a research project
-------------------	---------	------------	---

COMPLEMENTARY PHYSICS

COURSE OUTCOME

Delivery Pattern	Paper	Paper Code	Outcome
First Semester	Properties of matter & Thermodynamics	РНҮ1С01	 Understand the basic principles of elasticity Understand the concepts of surface tension Understand the aspects of viscosity Understand the basic principles of Thermodynamics
Second Semester	Optics, Laser & Electronics	РНҮ2С02	 Understand the basic concepts of interference and diffraction Understand the concepts of polarization Understand the fundamentals of electronics Understand the important principles of laser physics
Third Semester	Mechanics, Relativity, Waves and Oscillations	РНҮЗСОЗ	 Understand the basic ideas of frames of reference and the principles of conservation of energy and momentum Understand the concepts of relativity Understand the basic ideas of oscillations and waves Understand the basic ideas of modern Physics
Fourth Semester	Electricity, Magnetism and Nuclear physics	РНҮ4СО4	 Understand the basic ideas of static and current electricity Understand the concepts of magnetism Describe the fundamental concepts of nuclear physics Understand the basic ideas of cosmic rays and elementary particles
Fourth Semester	PHYSICS PRACTICALS I	РНҮ4С05	 Apply and illustrate the concepts of properties of matter through experiments Apply and illustrate the concepts of electricity and magnetism through experiments Apply and illustrate the concepts of optics through experiments Apply and illustrate the principles of electronics through experiments