

UNIVERSITY OF CALICUT

Abstract

General and Academic IV- Faculty of Science- Scheme and Syllabus of B.Sc. Microbiology Honours Programme -in tune with the CUFYUGP Regulations 2024, with effect from 2024 admission - Approved-Subject to ratification by the Academic Council-Implemented- Orders Issued

G & A - IV - J

U.O.No. 9675/2024/Admn

Dated, Calicut University.P.O, 20.06.2024

Read:-1.U.O.No. 3103/2024/Admn dated 22.02.2024.

- 2.Item no.1 of the minutes of the meeting of the Board of Studies in Microbiology (SB) held on 18.05.2024.
- 3. Remarks of the Dean, Faculty of Science dated 25.05.2024.
- 4. Orders of the Vice Chancellor in the file of even no dated 31.05.2024.

ORDER

- 1. The Regulations of Calicut University Four Year UG Programmes (CUFYUGP Regulations 2024) for Affiliated Colleges, has been implemented with effect from 2024 admission, vide paper read as (1).
- 2. The Board of Studies in Microbiology (SB) in the meeting held on 18.05.2024 vide paper read as (2) , has approved the Scheme and Syllabus of B.Sc.Microbiology Honours Programme in tune with CUFYUGP Regulations 2024 ,with effect from 2024 admission .
- 3. The Dean, Faculty of Science vide paper read as (3) ,has approved the minutes of the meeting of the Board of Studies in Microbiology (SB) held on 18.05.2024.
- 4. Considering the urgency, the Vice Chancellor has approved the minutes of the meeting of the Board of Studies in Microbiology(SB) held on 18.05.2024 and accorded sanction to implement the Scheme and Syllabus of B.Sc.Microbiology Honours programme with effect from 2024 admission, subject to ratification by the Academic Council.
- 5. The Scheme and Syllabus of B.Sc.Microbiology Honours programme in tune with CUFYUGP Regulations 2024, is thus implemented with effect from 2024 admission, subject to ratification by the Academic Council. .
- 6. Orders are issued accordingly. (Syllabus appended)

Ajayakumar T.K

Assistant Registrar

То

1.Principals of all affiliated colleges 2.DR, CDOE Copy to: PS to VC/PA to PVC/ PA to Registrar/PA to CE/DR, DOA/JCE I/JCE IV/DoA/EX and EG Sections/GA I F/CHMK Library/Information Centres/SF/DF/FC

Forwarded / By Order

Section Officer

UNIVERSITY OF CALICUT

B.Sc. MICROBIOLOGY HONOURS (MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS & MODEL QUESTION PAPERS w.e.f. 2024 admission onwards

(CUFYUGP Regulations 2024)

B.Sc. MICROBIOLOGY HONOURS (MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS

LIST OF COURSES IN MICROBIOLOGY

No	Course	Sem	Code	Title	Hr/Wk	Credit	P/T	Page
I	SCHEME		3040		227, 1, 12	or cure	-,-	1
II	MAJOR (S					33
1	Major	I	MBY1CJ 101	Introduction to Microbiology	5	4	P	34
2	Major	II	MBY2CJ 101	Basic Techniques in Microbiology	5	4	P	38
3	Major	III	MBY3CJ 201	Microbial Physiology	5	4	P	42
4	Major	III	MBY3CJ 202	Microbial Metabolism	5	4	P	46
5	Major	IV	MBY4CJ 203	Environmental and Sanitation Microbiology	5	4	P	49
6	Major	IV	MBY4CJ 204	Soil and Agricultural Microbiology	5	4	P	53
7	Major	IV	MBY4CJ 205	Molecular biology	5	4	P	57
8	Major	V	MBY5CJ 301	Systemic Bacteriology	5	4	P	61
9	Major	V	MBY5CJ 302	Industrial Microbiology	5	4	P	65
10	Major	V	MBY5CJ 303	Basic aspects of Immunology	4	4	T	69
11	Major	VI	MBY6CJ 304	Food and Dairy Microbiology	5	4	P	73
12	Major	VI	MBY6CJ 305	Microbial Biotechnology	5	4	P	76
13	Major	VI	MBY6CJ 306	Principles of Genetics	4	4	T	80
14	Major	VII	MBY7CJ 401	Biophysics and instrumentation	5	4	P	84
15	Major	VII	MBY7CJ 402	Advanced Immunology and Cancer biology	5	4	P	88
16	Major	VII	MBY7CJ 403	Microbial Biochemistry	5	4	P	92
17	Major	VII	MBY7CJ 404	Mycology and Parasitology	5	4	P	96
18	Major	VII	MBY7CJ 405	Antimicrobials and Drug resistance	5	4	P	99
19	Major	VIII	MBY8CJ 406	Biostatistics and Bioinformatics	5	4	P	102
20	Major	VIII	MBY8CJ 407	Software tools in Research	4	4	T	107
21	Major	VIII	MBY8CJ 408	Pharmaceutical Microbiology	4	4	T	110
22	Major	VIII	MBY8CJ 489	Research Methodology in biological sciences	4	4	T	113
III	ELECTIV	E COUR	RSES					117
29	Elective	V	MBY5EJ 301 (1) Introduction to rDNA technology	4	4	T	118
30	Elective	V	MBY5EJ 302 (1) Tools and Techniques in rDNA technology	4	4	T	121
31	Elective	V	MBY5EJ 303 (2) Basic Human Physiology	4	4	T	124
32	Elective	V	MBY5EJ 304 (2) Techniques in clinical laboratory	4	4	T	128
33	Elective	V	MBY5EJ 305 ((3) Microbes in Food and Water	4	4	T	131
34	Elective	V	MBY5EJ 306 ((3) Food quality assurance	4	4	T	134
35	Elective	V	MBY5EJ 307	Enzymology	4	4	T	138
36	Elective	VI	MBY6EJ 301 (1) Applications of rDNA technology-1	4	4	T	141
37	Elective	VI	MBY6EJ 302 (1) Applications of rDNA technology-II	4	4	T	144
38	Elective	VI	MBY6EJ 303 (2) Diagnostic Microbiology	4	4	T	147
39	Elective	VI	MBY6EJ 304 (2) Advanced Diagnostic techniques in microbiology	4	4	T	151
40	Elective	VI	MBY6EJ 305 (3) Laboratory techniques for food and water analysis	4	4	T	155
41	Elective	VI	MBY6EJ 306 (3) Food and water borne diseases	4	4	T	158
42	Elective	VI	MBY6EJ 307	Microbial Taxonomy	4	4	T	162
43	Elective	VI	MBY6EJ 308	Biosafety and Bioethics	4	4	T	165

44	Elective	VIII	MBY8EJ 401	Cell Biology	4	4	T	168
45	Elective	VIII	MBY8EJ 402	Cell and Tissue culture	4	4	T	171
46	Elective	VIII	MBY8EJ 403	Plant Pathology	4	4	T	174
47	Elective	VIII	MBY8EJ 404	Microbes in extreme environment	4	4	T	178
48	Elective	VIII	MBY8EJ 405	Virology and Emerging Microbial Diseases	4	4	T	181
49	Elective	VIII	MBY8EJ 406	Plant derived antimicrobials	4	4	T	184
50	Elective	VIII	MBY8EJ 407	Developmental biology	4	4	T	187
III	MINOR CO	OURSES						190
23	Minor	I	MBY1MN 100	Introduction to Microbiology	5	4	P	191
24	Minor	I	MBY1MN 101	Microbial Growth	5	4	P	195
25	Minor	II	MBY2MN 100	Basic Techniques in Microbiology	5	4	P	198
26	Minor	II	MBY2MN 101	Bacterial infections and Host defense systems	5	4	P	202
27	Minor	III	MBY3MN 200	Microbial metabolism	5	4	P	205
28	Minor	III	MBY3MN 201	Applied Microbiology	5	4	P	208
V	GENERAL	FOUND	ATION COURS	SES				211
51	GFC-MDC	I	MBY1FM 105	Microorganisms in Daily life	3	3	T	212
52	GFC-MDC	II	MBY2FM 106	Applied Microbiology	3	3	T	216
53	GFC-VAC	III	MBY3FV 108	Microbial soild waste management	3	3	T	219
54	GFC-VAC	IV	MBY4FV 110	Fermented Foods	3	3	T	222
55	GFC-SEC	V	MBY5FS 112	Entrepreneurial Microbiology	3	3	T	225
56	GFC-SEC	VI	MBY6FS 113	Clinical Microbiology	3	3	T	229

SCHEME

PROGRAMME OUTCOMES (PO)At the end of the graduate program at Calicut University, a student would:

PO 1	Knowledge Acquisition	Demonstrate a profound understanding of knowledge trends and their impact on the chosen discipline of study.
PO 2	Collaboration, Inclusiveness,	Become a team player who drives positive change through effective communication, collaborative acumen, transformative leadership, and a dedication to inclusivity.
PO 3	Professional Skills	Demonstrate professional skills to navigate diverse career paths with confidence and adaptability.
PO 4	Digital Intelligence	Demonstrate proficiency in varied digital and technological tools to understand and interact with the digital world, thus effectively processing complex information.
PO 5	Scientific Awareness and Critical Thinking	Emerge as an innovative problem-solver and impactful mediator, applying scientific understanding and critical thinking to address challenges and advance sustainable solutions.
PO 6	Human Values, Professional Ethics, and Societal and Environmental Responsibility	Become a responsible leader, characterized by an unwavering commitment to human values, ethical conduct, and a fervent dedication to the well-being of society and the environment.
PO 7	Research, Innovation, and Entrepreneurship	Emerge as a researcher and entrepreneurial leader, Forging collaborative partnerships with industry, academia, and communities to contribute enduring solutions for local, regional, and global development.

PROGRAMME SPECIFIC OUTCOMES (PSO)
At the end of the BSc Microbiology program at Calicut University, a student would:

	Most and Ministrational Most and Transfer Conference would.
PSO 1	Mastery of Microbiological Knowledge and Trends: Graduates will demonstrate comprehensive knowledge of microbiology, including understanding current trends and their implications in various sectors such as healthcare, environment, and biotechnology.
PSO 2	Collaborative Research and Interdisciplinary Teamwork: Graduates will exhibit the ability to work effectively in interdisciplinary teams on microbiological research and projects, showcasing strong communication skills, leadership, and inclusivity.
PSO 3	Proficiency in Microbiological Techniques and Practices: Graduates will possess advanced skills in microbiological techniques, laboratory practices, and safety protocols, enabling them to confidently pursue diverse career paths in research, diagnostics, and industry.
PSO 4	Digital and Technological Competency in Microbiology: Graduates will demonstrate proficiency in utilizing digital tools and technologies for microbiological research, data analysis, and communication, thereby processing complex biological information effectively.
PSO 5	Application of Critical Thinking and Scientific Method: Graduates will emerge as critical thinkers who apply scientific methodology and reasoning to investigate microbiological phenomena, address challenges, and contribute to sustainable solutions.
PSO 6	Ethical Conduct, Environmental Stewardship, and Social Responsibility: Graduates will be recognized for their ethical conduct in research and professional practices, commitment to environmental conservation, and contributions towards societal health and well-being.
PSO 7	Innovation and Entrepreneurship in Microbiology: Graduates will have the capacity to initiate and participate in innovative ventures, research collaborations, and entrepreneurial endeavors aimed at addressing local and global challenges through microbiological solutions.

MINIMUM CREDIT REQUIREMENTS OF THE DIFFERENT PATHWAYS IN THE THREE-YEAR PROGRAMME IN CUFYUGP

Sl. No.	Academic Pathway	Major	Minor/ Other Disciplines	Foundation Courses AEC: 4 MDC: 3 SEC: 3 VAC: 3	Intern- ship	Total Credits	Example
		Each course has 4 credits		Each course has 3 credits			
1	Single Major	68	24	39	2	133	Major: Microbiology +
	(A)	(17 courses)	(6 courses)	(13 courses)			six courses in different disciplines in different combinations
2	Major (A) with Multiple Disciplines (B, C)	68	12 + 12	39	2	133	Major: Microbiology +
		(17 courses)	(3+3=6 courses)	(13 courses)			Biochemistry and Biostatistics/Compu ter application
3	Major (A) with Minor (B)	68	24	39	2	133	Major: Microbiology
		(17 courses)	(6 courses)	(13 courses)			Minor: Biochemistry
4	Major (A) with Vocational Minor (B)	68	24	39	2	133	Major: Microbiology
		(17 courses)	(6 courses)	(13 courses)	_		Minor: Biotechnology
5	Double Major (A, B)	A: 48 (12 courses)	-	12 + 18 + 9	2	133	Microbiology and Biochemistry double major

	2 MDC, 2 SEC, 2 VAC and the Internship should be in Major A. Total credits in Major A should be 48 + 20 = 68 (50% of 133) 1 MDC, 1 SEC and 1 VAC should be in Major B. Total credits in Major B should be 44 + 9 = 53 (40% of 133)	
Exit with U	G Degree / Proceed to Fourth Year with 133 Cred	dits

B.Sc. MICROBIOLOGY HONOURS PROGRAMME COURSE STRUCTURE FOR PATHWAYS 1 – 4

2. Major with Multiple Disciplines4. Major with Vocational Minor

Single Major
 Major with Minor

Semest er	Course Code	Course Title	Total Hours	Hours/ Week	Credits	Marks	Marks	
						Interna l	External	Total
1	MBY1CJ 101/ MBY1MN100	Introduction to Microbiology	75	5	4	30	70	100
		Minor Course 1	75	5	4	30	70	100
		Minor Course 2	75	5	4	30	70	100
	ENG1FA 101(2)	AEC1– English	60	4	3	25	50	75
		AEC2 – Additional Language	45	3	3	25	50	75
		MDC1 – Other than Major	45	3	3	25	50	75
		Total		25	21	165	360	525
2	MBY2CJ 101/ MBY2MN100	Basic Techniques in Microbiology	75	5	4	30	70	100
		Minor Course 3	75	5	4	30	70	100
		Minor Course 4	75	5	4	30	70	100
	ENG2FA 103(2)	AEC3– English	60	4	3	25	50	75
		AEC4 – Additional Language	45	3	3	25	50	75
		MDC2 – Other than Major	45	3	3	25	50	75
		Total		25	21	165	360	525

3	MBY3CJ 201	Microbial Physiology	75	5	4	30	70	100
	MBY3CJ 202/ MBY3MN200	Microbial Metabolism	75	5	4	30	70	100
		Minor Course 5	75	5	4	30	70	100
		Minor Course 6	60/ 75	4	4	30	70	100
		MDC3 – Kerala Knowledge System	45	3	3	25	50	75
	ENG3FV 108(2)	VAC1 – English	45	3	3	25	50	75
		Total		25	22	170	380	550
4	MBY4CJ 203	Environmental and Sanitation Microbiology	75	5	4	30	70	100
	MBY4CJ 204	Soil and Agricultural Microbiology	75	5	4	30	70	100
	MBY4CJ 205	Molecular Biology	75	5	4	30	70	100
	ENG4FV 109(2)	VAC2 – English	45	3	3	25	50	75
		VAC3 – Additional Language	45	3	3	25	50	75
	ENG4FS 111(2)	SEC1 – English	60	4	3	25	50	75
		Total		25	21	165	360	525
5	MBY5CJ 301	Systemic Bacteriology	75	5	4	30	70	100
	MBY5CJ 302	Industrial Microbiology	75	5	4	30	70	100
	MBY5CJ 303	Basic Aspects of Immunology	60	4	4	30	70	100
		ElectiveCourse 1 in Major	60	4	4	30	70	100
		ElectiveCourse 2 in Major	60	4	4	30	70	100
		SEC2 Entrepreneurial Microbiology	45	3	3	25	50	75
		Total		25	23	175	400	575
6	MBY6CJ 304/ MBY8MN304	Food and Dairy Microbiology	75	5	4	30	70	100

					30	70	100
MBY6CJ 306/ MBY8MN306	Biotechnology Principles of Genetics	60	4	4	30	70	100
	ElectiveCourse 3 in Major	60	4	4	30	70	100
	ElectiveCourse 4 in Major	60	4	4	30	70	100
MBY6FS 113	SEC3 – Clinical Microbiology	45	3	3	25	50	75
MBY6CJ 349	Internship in Major (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	1	50
	Total		25	25	225	400	625
Total Cr	edits for Three Ye	ars		133			3325
MBY7CJ 401	Biophysics and Instrumentation	75	5	4	30	70	100
MBY7CJ 402	Advanced Immunology and Cancer Biology	75	5	4	30	70	100
MBY7CJ 403	Microbial Biochemistry	75	5	4	30	70	100
MBY7CJ 404	Mycology and Parasitology	75	5	4	30	70	100
MBY7CJ 405	Antimicrobials and drug resistance	75	5	4	30	70	100
	Total		25	20	150	350	500
MBY8CJ 406/MBY8MN4 06	Biostatistics and Bioinformaites	75	5	4	30	70	100
MBY8CJ 407/ MBY8MN407	Software Tools in Research	60	4	4	30	70	100
MBY8CJ 408/ MBY8MN408	Pharmaceutical Microbiology	60	4	4	30	70	100
	MBY6FS 113 MBY6CJ 349 Total Cr MBY7CJ 401 MBY7CJ 402 MBY7CJ 403 MBY7CJ 404 MBY7CJ 405 MBY8CJ 406/MBY8MN4 06 MBY8CJ 407/ MBY8MN407 MBY8CJ 408/	ElectiveCourse 3 in Major ElectiveCourse 4 in Major MBY6FS 113 MBY6FS 113 MBY6CJ 349 MBY6CJ 349 MBY6CJ 349 MBY7CJ 401 MBY7CJ 401 MBY7CJ 402 MBY7CJ 402 MBY7CJ 403 MBY7CJ 404 MBY7CJ 404 MBY7CJ 405 MBY7CJ 405 MBY8CJ 406/MBY8MN4 MBY8CJ 407/ MBY8CJ 407/ MBY8CJ 408/ MBY8CJ 408/ MBY8CJ 408/ MBY8CJ 408/ Parmaceutical	MBY8MN306 ElectiveCourse 3 in Major 60	Genetics ElectiveCourse 3 in Major 60 4	Genetics ElectiveCourse 3 in Major 60 4 4	MBY8MN306 Cenetics ElectiveCourse 3 in Major 60	Genetics ElectiveCourse 3 in Major 60 4 4 30 70

MBY8CJ 449	Project (in Honours programme)	360*	13*	12	90	210	300
MBY8CJ 499	Project (in Honours with Research programme)	360*	13*	12	90	210	300
	Elective Course 5 in Major / Minor Course 7	60	4	4	30	70	100
	Elective Course 6 in Major / Minor Course 8	60	4	4	30	70	100
	Elective Course 7 in Major / Minor Course 9 / Major Course in any Other Discipline	60	4	4	30	70	100
OR (instead of	Elective Course 7 in 1	Major, in t	he case of	Honours	with Res	search Prog	gramme
MBY8CJ 489	Research Methodology in Biological Science	60	4	4	30	70	100
	Total		25	24	180	420	600
Total Credits for Four Years				177			4425

^{*} The teacher should have 13 hrs/week of engagement (the hours corresponding to the three core courses) in the guidance of the Project(s) in Honours programme and Honours with Research programme, while each student should have 24 hrs/week of engagement in the Project work. Total hours are given based on the student's engagement.

CREDIT DISTRIBUTION FOR PATHWAYS 1 – 4

2. Major with Multiple Disciplines4. Major with Vocational Minor

Single Major
 Major with Minor

Semester	Major Courses	Minor	General Foundation	Internship/	Total
	Courses	Courses	Courses	Project	10001
1	4	4+4	3 + 3 + 3	-	21
2	4	4+4	3 + 3 + 3	1	21
3	4 + 4	4 + 4	3 + 3	-	22
4	4 + 4 + 4	-	3 + 3 + 3	1	21
5	4 + 4 + 4 + 4 + 4	-	3	-	23
6	4 + 4 + 4 + 4 + 4	-	3	2	25
Total for					
Three	68	24	39	2	133
Years					
7	4 + 4 + 4 + 4 + 4	-	-	-	20
8	4 + 4 + 4	4 + 4 + 4	-	12*	24
	*In	stead of thre	e Major course	S	
Total for Four Years	88 + 12 = 100	36	39	2	177

DISTRIBUTION OF MAJOR COURSES IN MICROBIOLOGY FOR PATHWAYS 1 – 4

1. Single Major

2. Major with Multiple Disciplines4. Major with Vocational Minor

3. Major with Minor

Semester	Course Code	Course Title	Total Hours	Hours/ Week	Credits
1	MBY1CJ 101/ MBY1MN100	Introduction to Microbiology	75	5	4
2	MBY2CJ 101/ MBY2MN100	Basic Techniques in Microbiology	75	5	4
3	MBY3CJ 201	Microbial Physiology	75	5	4
	MBY3CJ 202/ MBY3MN200	Microbial Metabolism	75	5	4
4	MBY4CJ 203	Environmental and Sanitation Microbiology	75	5	4
	MBY4CJ 204	Soil and Agricultural Microbiology	75	5	4
	MBY4CJ 205	Molecular Biology	75	5	4
5	MBY5CJ 301	Systemic Bacteriology	75	5	4
	MBY5CJ 302	Industrial Microbiology	75	5	4
	MBY5CJ 303	Basic Aspects of Immunology	60	4	4
		Elective Course 1 in Major*	60	4	4
		Elective Course 2 in Major*	60	4	4
6	MBY6CJ 304/ MBY8MN304	Food and Dairy Microbiology	75	5	4
	MBY6CJ 305/ MBY8MN305	Microbial Biotechnology	75	5	4
	MBY6CJ 306/ MBY8MN306	Principles of Genetics	60	4	4
		Elective Course 3 in Major*	60	4	4
		Elective Course 4 in Major*	60	4	4
	MBY6CJ 349	Internship in Major (Credit for internship to be awarded only at the end of Semester 6)	60		2
		Total	l for Three Years		70
7	MBY7CJ 401	Biphysics and Instrumentation	75	5	4
	MBY7CJ 402	Advanced Immunology and Cancer Biology	75	5	4

	MBY7CJ 403	Microbial Biochemistry	75	5	4
	MBY7CJ 404	Mycology and Parasitology	75	5	4
	MBY7CJ 405	Antimicrobials and drug resistance	75	5	4
8	MBY8CJ 406/MBY8MN406	Biostatistics and Bioinformaites	75	5	4
	MBY8CJ 407/ MBY8MN407	Software Tools in Research	60	4	4
	MBY8CJ 408/ MBY8MN408	Pharmaceutical Microbiology	60	4	4
		Core Courses MBY8CJ 406/MBY8M MN407 and MBY8CJ 408/ MBY8M			407/
	MBY8CJ 449	Project (in Honours programme)	360	13	12
	MBY8CJ 499	Project (in Honours with Research programme)	360	13	12
		Elective Course 5 in Major / Minor Course 7**	60	4	4
		Elective Course 6 in Major / Minor Course 8**	60	4	4
		Elective Course 7 in Major / Minor Course 9 / Major Course in any Other Discipline**	60	4	4
	OR (instead of Ele	ctive course 7 in Major, in Honours	with Rese	earch prog	gramme)
	MBY8CJ 489	Research Methodology in Biological Science	60	4	4
		Total for Four Years			114

^{*}Choose any two elective courses each form the course basket of seven elective courses in semester 5 and nine elective courses in semester 6, as listed below in the two table of elective courses with specialization and elective courses with no specialization.

^{**} Chose any three elective courses from the course basket of seven elective courses in semester 8, as listed below in the able of eletive courses with no specialization.

ELECTIVE COURSES IN MICROBIOLOGY WITH SPECIALISATION

Group	Sl.	Course	Title	Semest	Total	Hrs/	Credi		Marks	
No.	No.	Code		er	Hrs	Week	ts	Intern al	Exter nal	Total
1			rD	NA Tech	nology					
	1	MBY5EJ 301(1)	Introduction to rDNA technology	5	60	4	4	30	70	100
	2	MBY5EJ 302(1)	Tools and Techniques in rDNA technology	5	60	4	4	30	70	100
	3	MBY6EJ 301(1)	Microbial Biotechnology	6	60	4	4	30	70	100
	4	MBY6EJ 302(1)	Applications of rDNA technology	6	60	4	4	30	70	100
2			Clin	ical Mici	robiolog	y				
	1	MBY5EJ 303(2)	Basic Human Physiology	5	60	4	4	30	70	100
	2	MBY5EJ 304(2)	Techniques in clinical laboratory	5	60	4	4	30	70	100
	3	MBY6EJ 303(2)	Diagnostic Microbiology	6	60	4	4	30	70	100
	4	MBY6EJ 304(2)	Advanced Diagnostic Techniques	6	60	4	4	30	70	100
									,	
3			Food and W	ater Mi	crobiolo	gy				
	1	MBY5EJ 305(3)	Microbes in food and water	5	60	4	4	30	70	100
	2	MBY5EJ 306(3)	Food quality assurance	5	60	4	4	30	70	100
	3	MBY6EJ 305(3)	Laboratory techniques for Food and water analysis	6	60	4	4	30	70	100
	4	MBY6EJ 306(3)	Food and water borne diseases	6	60	4	4	30	70	100

ELECTIVE COURSES IN MICROBIOLOGY WITH NO SPECIALISATION

Sl.	Course Code	Title	Semest	Total	Hrs/	Credi		Marks	ı
No.			er	Hrs	Week	ts	Intern	Exter	Total
							al	nal	
1	MBY5EJ 307	Enzymology	5	60	4	4	30	70	100
2	MBY6EJ 307	Microbial Taxonomy	6	60	4	4	30	70	100
3	MBY6EJ 308	Biosafety and Bioethics	6	60	4	4	30	70	100
4	MBY6EJ 309	Virology and emerging microbial diseases	6	60	4	4	30	70	
5	MBY8EJ 401	Cell Biology	8	60	4	4	30	70	100
6	MBY8EJ 402	Cell and Tissue Culture	8	60	4	4	30	70	100
7	MBY8EJ 403	Plant pathology	8	60	4	4	30	70	100
8	MBY8EJ 404	Microbes in extreme environment	8	60	4	4	30	70	100
9	MBY8EJ 405	Virology and emerging microbial diseases	8	60	4	4	30	70	100
10	MBY8EJ 406	Plant derived antimicrobials	8	60	4	4	30	70	100
11	MBY8EJ 407	Developmental biology	8	60	4	4	30	70	100

DISTRIBUTION OF GENERAL FOUNDATION COURSES IN MICROBIOLOGY

							Marks	
Semes ter	Course Code	Course Title	Total Hours	Hours/ Week	Credits	Intern al	Externa l	Total
1	MBY1FM 105	MDC 1 – Microorganisms in Daily life	45	3	3	25	50	75
2	MBY2FM 106	MDC 2 – Applied Microbiology	45	3	3	25	50	75
3	MBY3FV 108	VAC 1 – Microbial Solid Waste Management	45	3	3	25	50	75
4	MBY4FV 110	VAC 2 – Fermented Foods	45	3	3	25	50	75
5	MBY5FS 112	SEC 2 – Entrepreneurial Microbiology	45	3	3	25	50	75
6	MBY6FS 113	SEC 3 – Clinical Microbiology	45	3	3	25	50	75

GROUPING OF MINOR COURSES IN MICROBIOLOGY

(Title of the Minor: MICROBIOLOGY)

The courses given below should not be offered as minor courses to students who have taken microbiology as the major discipline. They should be offered to students from other major disciplines only.

Group	Sl.	Course Code	Title	Seme	Total	Hrs/	Cre		Marks	3
No.	No.			ster	Hrs	Week	dits	Inte rnal	Exte rnal	Total
Ι			GENERA	L MIC	ROBIOI	LOGY			I	
	1	MBY1MN 100	Introduction to Microbiology	1	75	5	4	30	70	100
	2	MBY2MN 100	Basic Techniques in Microbiology	2	75	5	4	30	70	100
	3	MBY3MN 200	Microbial metabolism	3	75	5	4	30	70	100
									•	
II			APPLIE	D MICF	ROBIOL	OGY				
	1	MBY1MN 101	Microbial growth	1	75	5	4	30	70	100
	2	MBY2MN 101	Bacterial infections and Host defense systems	2	75	5	4	30	70	100
	3	MBY3MN 201	Applied Microbiology	3	75	5	4	30	70	100

- (i). Students in Single Major pathway can choose course/courses from any of the Minor/Vocational Minor groups offered by a discipline other than their Major discipline.
- (ii). Students in Major with Multiple Disciplines pathway can choose as one of the multiple disciplines, all the three courses from any one of the Minor/Vocational Minor groups offered by any discipline, including their Major discipline. If they choose one of the Minor/Vocational Minor groups offered by their Major discipline as the first one of the multiple disciplines, then their choice as the second one of the multiple disciplines should be any one of the Minor/Vocational Minor groups offered by a discipline other

than the Major discipline. If the students choose any one of the Minor/Vocational Minor groups in Microbiology as given above, then the title of the group will be the title of that multiple discipline.

(iii). Students in Major with Minor pathway can choose all the courses from any two Minor groups offered by any discipline. If the students choose any two Minor groups in Microbiology as given above, then the title of the Minor will be **Microbiology.**

COURSE STRUCTUREFOR BATCH A1(B2) IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Microbiology (Major A)

B1: 68 credits in Major B

A2: 53 credits in Microbiology (Major A) B2: 53 credits in Major B

The combinations available to the students: (A1 & B2), (B1 & A2)

Note: Unless the batch is specified, the course is for all the students of the class

Seme		C TEV	Total Ho	Hours/	,	Marks		
ster	Course Code	Course Title	Hours	Week	Credits	Inter nal	Extern al	Total
		Core Course 1 in Major Microbiology – Introduction to Microbiology	75	5	4	30	70	100
	BBB1CJ 101	Core Course 1 in Major B –	60/ 75	4/5	4	30	70	100
	i i	Core Course 2 in Major Microbiology – Molecular Biology (for batch A1 only)	75	5	4	30	70	100
1	ENG1FA 101(2)	Ability Enhancement Course 1 – English	60	4	3	25	50	75
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
	MBY1FM 105	MDC 1 in Microbiology – Microorganisms in Daily life (for batch A1 only)	45	3	3	25	50	75
		Total		24/ 25	21			525
	MBY2CJ 101 / MBY2MN100	Core Course 3 in Major Microbiology – Basic Techniques in Microbiology	75	5	4	30	70	100
2	BBB2CJ 101	Core Course 2 in Major B –	60/75	4/ 5	4	30	70	100
2	BBB2CJ 102 / BBB1CJ 102	Core Course 3 in Major B – (for batch B2 only)	60/ 75	4/ 5	4	30	70	100
	ENG2FA 103(2)	Ability Enhancement Course 3 – English	60	4	3	25	50	75

		Ability Enhancement Course 4				25	50	75
		Additional Language	45	3	3	23	30	73
		MDC 2 in Microbiology – Applied Microbiology	45	3	3	25	50	75
		Total		23/ 25	21			525
	MBY3CJ 201	Core Course 4 in Major Microbiology – Microbial Physiology	75	5	4	30	70	100
	MBY3CJ 202 / MBY3MN 200	Core Course 5 in Major Microbiology – Microbial Metabolism	75	5	4	30	70	100
	BBB3CJ 201	Core Course 4 in Major B	60/ 75	4/ 5	4	30	70	100
3	BBB3CJ 202	Core Course 5 in Major B	60/75	4/ 5	4	30	70	100
	BBB3FM 106 / BBB2FM 106	MDC 1 in B –	45	3	3	25	50	75
	MBY3FV 108	VAC 1 in Microbiology – Microbial Solid Waste Management (for batch A1 only)	45	3	3	25	50	75
		Total		23 / 25	22			550
	MBY4CJ 203	Core Course 6 in Major Microbiology – Environmental and Sanitation Microbiology	75	5	4	30	70	100
		Core Course 6 in Major B	60/ 75	4/5	4	30	70	100
4	MBY4CJ 204	Core Course 7 in Major Microbiology – Soil and Agricultural Microbiology (for batch A1 only)	75	5	4	30	70	100
	MBY4FV 110	VAC 2 in Microbiology – Fermented Foods	45	3	3	25	50	75
	BBB4FV 110	VAC 1in B –	45	3	3	25	50	75
	MBY4FS 112 / MBY5FS 112	SEC 1 in Microbiology – Entrepreneurial Microbiology	45	3	3	25	50	75
		Total		23/ 24	21			525
	MBY5CJ 303	Core Course 8 in Major Microbiology – Basic Aspects	60	4	4	30	70	100
5	WID I SCJ 303	of Immunology Core Course 7 in Major B –	60/ 75	4/5	4	30	70	100

	MBY5CJ 302	Core Course 9 in Major Microbiology – Industrial Microbiology (for batch A1 only)	75	5	4	30	70	100
		Elective Course 1 in Major Microbiology**	60	4	4	30	70	100
		ElectiveCourse 1 in Major B	60	4	4	30	70	100
	BBB5FS 112 / BBB4FS 112	SEC 1 in B	45	3	3	25	50	75
		Total		24/ 25	23			575
	MBY5CJ 301*/ MBY8MN 305	Core Course 10 in Major Microbiology Systemic Bacteriology	75	5	4	30	70	100
		Core Course 8 in Major B –	60/ 75	4/ 5	4	30	70	100
	BBB6CJ 305	Core Course 9 in Major B – (for batch B2 only)	60	4	4	30	70	100
		ElectiveCourse 2 in Major Microbiology**	60	4	4	30	70	100
6		Elective Course 2 in Major B	60	4	4	30	70	100
	MBY6FS 113	Skill Enhancement Course 2 in Microbiology – Clinical Microbiology (for batch A1 only)	45	3	3	25	50	75
	MBY6CJ 349	Internship in Major Microbiology (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
		Total		24/ 25	25			625
	Total Credits for Three Years				133			3325

For batch A1(B2), the course structure in semesters 7 and 8 is the same as for pathways 1-4, except that the number of the core and elective courses is in continuation of the number of courses in the two categories completed at the end of semester 6.

^{*}The course code of the same course as used for the pathways 1-4

^{**}Choose any one elective courses each in Major Microbiology form the course basket of seven elective courses in Microbiology in semester 5 and nine elective courses in Microbiology in semester 6, as listed in the two table of elective courses with specialization

and elective courses with no specialization. Chose any one elective course each in Major B from the course basket of elective courses in Major B in semester 5 and semester 6.

** Chose any three elective courses from the course basket of seven elective courses in semester 8, as listed below in the able of elective courses with no specialization.

CREDIT DISTRIBUTION FOR BATCH A1(B2) IN PATHWAY 5: DOUBLE MAJOR

			1 W 11 3. D	<u> </u>	10 0 11		
	Major	General		Major	General	AEC	
Semester	Courses in	Foundation	Internship/	Courses in B	Foundation		
Semester	Microbiolog	Courses in	Project in		Courses in B		Total
	у	Microbiology	Microbiology				
1	4 + 4	3	-	4	-	3 + 3	21
2	4	3	-	4 + 4	-	3 + 3	21
3	4 + 4	3	-	4 + 4	3	-	22
4	4 + 4	3 + 3	-	4	3	-	21
5	4 + 4 + 4	-	-	4 + 4	3	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total for	48	18	2	44	9	12	133
Three Years		68		5	53	12	133
	Major	Minor Courses					
	Courses in						
	Microbiolog						
	у						
7	4+4+4+4+4+4	-			-	-	20
8	4+4+4	4+4+4	12*				24
O	7 4 4			Maion agymess	_	_	
	Τ	In	stead of three I	viajor courses	T		T
Total for Four Years	88 + 12 = 100	12					177

COURSE STRUCTUREFOR BATCH B1(A2) IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Microbiology (Major A)

B1: 68 credits in Major B B2: 53 credits in Major B

A2: 53 credits in Microbiology (Major A)

The combinations available to the students: (A1 & B2), (B1 & A2)

Note: Unless the batch is specified, the course is for all the students of the class

Seme ster			Total	Hours/		Marks			
	Course Code	Course Title	Hours	Week	Credits	Inter nal	Exter nal	Total	
	MBY1CJ 101 / MBY1MN 100	Core Course 1 in Major Microbiology – Introduction to Microbiology	75	5	4	30	70	100	
	BBB1CJ 101	Core Course 1 in Major B	60/75	4/ 5	4	30	70	100	
1	BBB1CJ 102 / BBB2CJ 102	Core Course 2 in Major B (for batch B1 only)	60/ 75	4/ 5	4	30	70	100	
	ENG1FA 101(2)	Ability Enhancement Course 1 – English	60	4	3	25	50	75	
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75	
]	BBB1FM 105	MDC 1 in B – (for batch B1 only)	45	3	3	25	50	75	
		Total		23 – 25	21			525	
	MBY2CJ 101 / MBY2MN100	Core Course 2 in Major Microbiology— Basic Techniques in Microbiology	75	5	4	30	70	100	
	BBB2CJ 101	Core Course 3 in Major B	60/ 75	4/ 5	4	30	70	100	
2	MBY2CJ 102 / MBY1CJ 102 / MBY4CJ 205*	Core Course 3 in Major Microbiology – Molecular Biology (for batch A2 only)	75	5	4	30	70	100	
	ENG2FA 103(2)	Ability Enhancement Course 3 – English	60	4	3	25	50	75	
		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75	

•								
	MBY2FM 105 / MBY3FM 105	MDC 1 in Microbiology – Microorganisms in Daily Life	45	3	3	25	50	75
		Total		24/ 25	21			525
	MBY3CJ 201	Core Course 4 in Major Microbiology – Microbial Physiology	75	5	4	30	70	100
	MBY3CJ 202 / MBY3MN 200	Core Course 5 in Major Microbiology – Microbial Metabolism	75	5	4	30	70	100
3	BBB3CJ 201	Core Course 4 in Major B	60/75	4/ 5	4	30	70	100
3	BBB3CJ 202	Core Course 5 in Major B	60/75	4/ 5	4	30	70	100
	BBB3FM 106 / BBB2FM 106	MDC 2 in B –	45	3	3	25	50	75
	BBB3FV 108	VAC 1 in B – (for batch B1 only)	45	3	3	25	50	75
		Total		23/ 25	22			550
	MBY4CJ 203	Core Course 6 in Major Microbiology – Environmental and Sanitation Microbiology	75	5	4	30	70	100
		Core Course 6 in Major B	60/75	4/ 5	4	30	70	100
4		Core Course 7 in Major B (for batch B1 only)	60/ 75	4/ 5	4	30	70	100
4	MBY4FV 110	VAC 1 in Microbiology – Fermented Foods	45	3	3	25	50	75
	BBB4FV 110	VAC 2 in B –	45	3	3	25	50	75
	MBY4FS 112 / MBY5FS 112	SEC 1 in Microbiology – Entrepreneurial Microbiology	45	3	3	25	50	75
		Total		22/24	21			525
	MBY5CJ 303	Core Course 7 in Major Microbiology – Basic Aspects of Immunology	60	4	4	30	70	100
5		Core Course 8 in Major B	60/ 75	4/ 5	4	30	70	100
		Core Course 9 in Major B (for batch B1 only)	60	4	4	30	70	100

	Tota		133			3325		
		Total		24/ 25	25			625
	BBB6CJ 349	Internship in Major B (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
	BBB6FS 113	SEC 2 in B – (for batch B1 only)	45	3	3	25	50	75
		Elective Course 2 in Major B	60	4	4	30	70	100
6		ElectiveCourse 2 in Major Microbiology**	60	4	4	30	70	100
	MBY6CJ 306/ MBY8MN306	Core Course 9 in Major Microbiology – Principles of Genetics (for batch A2 only)	60	4	4	30	70	100
		Core Course 10 in Major B	60/ 75	4/ 5	4	30	70	100
		Core Course 8 in Major Microbiology – Systemic Bacteriology	75	5	4	30	70	100
		Total		23/ 24	23			575
	BBB5FS 112 / BBB4FS 112	SEC 1 in B	45	3	3	25	50	75
		Elective Course 1 in Major B	60	4	4	30	70	100
		Elective Course 1 in Major Microbiology**	60	4	4	30	70	100

To continue to study Microbiology in semesters 7 and 8, batch B1(A2) needs to earn additional 15 credits in Microbiology to make the total credits of 68. Suppose this condition is achieved, and the student of batch B1(A2) proceeds to the next semesters to study Microbiology. The course structure in semesters 7 and 8 is the same as for pathways 1 - 4, except that the number of the core and elective courses is in continuation of the number of courses in the two categories completed at the end of semester 6, taking into account the number of courses in Microbiology taken online to earn the additional 15 credits.

^{*}The course code of the same course as used for the pathways 1-4

^{**}Choose any one elective courses each in Major Microbiology form the course basket of seven elective courses in Microbiology in semester 5 and nine elective courses in

Microbiology in semester 6, as listed in the two table of elective courses with specialization and elective courses with no specialization. Chose any one elective course each in Major B from the course basket of elective courses in Major B in semester 5 and semester 6.

** Chose any three elective courses from the course basket of seven elecive courses in semester 8, as listed below in the able of eletive courses with no specialization.

CREDIT DISTRIBUTION FOR BATCH B1(A2) IN PATHWAY 5: DOUBLE MAJOR

Semester	Major Courses in B	General Foundation Courses in B	Internship/ Project in B	Major Courses in Microbiology	Courses in Foundation		Total
1	4 + 4	3	-	4	-	3 + 3	21
2	4	-	-	4 + 4	3	3 + 3	21
3	4 + 4	3 + 3	-	4 + 4	-	-	22
4	4 + 4	3	-	4	3 + 3	-	21
5	4 + 4 + 4	3	-	4 + 4	-	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total for	48	18	2	44	9	12	133
Three Years		68		5	53	12	133
Tears							
	Major Courses in B	Minor Courses					
7		Minor Courses			-	-	20
7 8	Courses in B 4 + 4 + 4 + 4	Minor Courses - 4+4+4	12*		-	- -	20 24
,	Courses in B 4 + 4 + 4 + 4 + 4	- 4+4+4	12* stead of three !	Major courses	-	-	

EVALUATION SCHEME

- 1. The evaluation scheme for each course contains two parts: internal evaluation (about 30%) and external evaluation (about 70%). Each of the Major and Minor courses is of 4-credits. It is evaluated for 100 marks, out of which 30 marks is from internal evaluation and 70 marks, from external evaluation. Each of the General Foundation course is of 3-credits. It is evaluated for 75 marks, out of which 25 marks is from internal evaluation and 50 marks, from external evaluation.
- **2.** The 4-credit courses (Major and Minor courses) are of two types: (i) courses with only theory and (ii) courses with 3-credit theory and 1-credit practical.
 - In 4-credit courses with only theory component, out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 10 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.
 - In 4-credit courses with 3-credit theory and 1-credit practical components, out of the total 5 modules of the syllabus, 4 modules are for theory and the fifth module is for practical. The practical component is internally evaluated for 20 marks. The internal evaluation of the 4 theory modules is for 10 marks.
- 3. All the 3-credit courses (General Foundational Courses) in Microbiology are with only theory component. Out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 5 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

S1.	Nature of the Course		Internal Evaluation in		External	Total
No.				out 30% of the	Exam	Marks
				total)	on 4 modules	
			Open-	On the other 4	(Marks)	
			ended	modules		
			module /			
			Practical			
1	4-credit	only theory	10	20	70	100
	course	(5 modules)				
2	4-credit	Theory	20	10	70	100
	course	(4 modules) +				
		Practical				
3	3-credit	only theory	5	20	50	75
	course	(5 modules)				

1. MAJOR AND MINOR COURSES

1.1. INTERNAL EVALUATION OF THEORY COMPONENT

Sl. No.	Components of Internal Evaluation of Theory Part of a Major / Minor	of Theory Part of a Major / Minor Course of 4-cre			
	Course	Theory	Only	Theory + Practical	
		4 Theory Open-ended Modules Module		4 Theory Modules	Practical
1	Test paper/ Mid-semester Exam	10	4	5	-
2	Seminar/ Viva/ Quiz	6	4	3	-
3	Assignment	4	2	2	-
		20 10		10	20*
Total		30		30	

^{*}Refer the table in section 1.2 for the evaluation of practical component

1.2. EVALUATION OF PRACTICAL COMPONENT

The evaluation of practical component in Major and Minor courses is completely by internal evaluation.

- Continuous evaluation of practical by the teacher-in-charge shall carry a weightage of 50%.
- The end-semester practical examination and viva-voce, and the evaluation of practical records shall be conducted by the teacher in-charge and an internal examiner appointed by the Department Council.
- The process of continuous evaluation of practical courses shall be completed before 10 days from the commencement of the end-semester examination.
- Those who passed in continuous evaluation alone will be permitted to appear for the end-semester examination and viva-voce.

The scheme of continuous evaluation and the end-semester examination and viva-voce of

practical component shall be as given below:

Sl. No.	Evaluation of Practical Component of Credit-1 in a Major / Minor Course	Marks for Practical	Weightage
	Continuous evaluation of practical/ exercise performed in practical classes by the students	10	50%
	End-semester examination and viva-voce to be conducted by teacher-in-charge along with an additional examiner arranged internally by the Department Council		35%
	Evaluation of the Practical records submitted for the end semester viva—voce examination by the teacher-in-charge and additional examiner		15%
	Total Marks	20	

1.3. EXTERNAL EVALUATION OF THEORY COMPONENT

External evaluation carries 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5).

PATTERN OF QUESTION PAPER FOR MAJOR AND MINOR COURSES

Duration	Tymo	Total No. of	No. of Questions	Marks for	Ceiling
Duration	Type	Questions	to be Answered	Each Question	of Marks
	Short Answer	10	8 – 10	3	24
2 Hours	Paragraph/ Problem	8	6 – 8	6	36
	Essay	2	1	10	10
				Total Marks	70

2. INTERNSHIP

- All students should undergo Internship of 2-credits during the first six semesters in a firm, industry or organization, or training in labs with faculty and researchers of their own institution or other Higher Educational Institutions (HEIs) or research institutions.
- Internship can be for enhancing the employability of the student or for developing the research aptitude.
- Internship can involve hands-on training on a particular skill/ equipment/ software. It can be a short project on a specific problem or area. Attending seminars or workshops related to an area of learning or skill can be a component of Internship.
- A faculty member/ scientist/ instructor of the respective institution, where the student does the Internship, should be the supervisor of the Internship.

2.1. GUIDELINES FOR INTERNSHIP

- 1. Internship can be in Microbiology or allied disciplines.
- 2. There should be minimum 60 hrs. of engagement from the student in the Internship.
- 3. Summer vacations and other holidays can be used for completing the Internship.
- 4. In BSc. Microbiology Honours programme, institute/ industry visit or study tour is a requirement for the completion of Internship. Visit to minimum one national research institute, research laboratory and place of scientific importance should be part of the study tour. A brief report of the study tour has to be submitted with photos and analysis.
- 5. The students should make regular and detailed entries in to a personal log book through the period of Internship. The log book will be a record of the progress of the Internship and the time spent on the work, and it will be useful in writing the final report. It may contain experimental conditions and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Internship supervisor should periodically examine and countersign the log book.
- 6. The log book and the typed report must be submitted at the end of the Internship.
- 7. The institution at which the Internship will be carried out should be prior-approved by the Department Councilof the college where the student has enrolled for the UG Honours programme.

2.2. EVALUATION OF INTERNSHIP

- The evaluation of Internship shall be done internally through continuous assessment mode by a committee internally constituted by the Department Councilof the college where the student has enrolled for the UG Honours programme.
- The credits and marks for the Internship will be awarded only at the end of semester 6.
- The scheme of continuous evaluation and the end-semester viva-voce examination based on the submitted report shall be as given below:

Sl. No.	Components of Evaluation of Internship	Marks for Internship 2 Credits	Weightage
1	Continuous evaluation of Acquisition of skill set internship through interim	10	40%
2	presentations and reports by Interim Presentation and the committee internally Viva-voce	5	
3	constituted by the Punctuality and Log Book Department Council	5	
4	Report of Institute Visit/ Study Tour	5	10%
5	End-semester viva-voce Quality of the work examination to be conducted	6	35%
6	by the committee internally Presentation of the work constituted by the	5	
7	Department Council Viva-voce	6	
8	Evaluation of the day-to-day records, the report of internship supervisor, and final report submitted for the end semester viva—voce examination before the committee internally constituted by the Department Council		15%
	Total Marks	50	

3. PROJECT

3.1. PROJECT IN HONOURS PROGRAMME

- In Honours programme, the student has the option to do a Project of 12-credits instead of three Core Courses in Major in semester 8.
- The Project can be done in the same institution/ any other higher educational institution (HEI)/ research centre/ training centre.
- The Project in Honours programme can be a short research work or an extended internship or a skill-based training programme.
- A faculty member of the respective institution, where the student does the Project, should be the supervisor of the Project.

3.2. PROJECT IN HONOURS WITH RESEARCH PROGRAMME

- Students who secure 75% marks and above (equivalently, CGPA 7.5 and above) cumulatively in the first six semesters are eligible to get selected to Honours with Research stream in the fourth year.
- A relaxation of 5% in marks (equivalently, a relaxation of 0.5 grade in CGPA) is allowed for those belonging to SC/ST/OBC (non-creamy layer)/ Differently-Abled/ Economically Weaker Section (EWS)/ other categories of candidates asper the decision of the UGC from time to time.
- In Honours with Research programme, the student has to do a mandatory Research Project of 12-creditsinstead of three Core Courses in Major in semester 8.
- The approved research centres of University of Calicut or any other university/ HEI can offer the Honours with Research programme. The departments in the affiliated colleges under University of Calicut, which are not the approved research centres of the University, should get prior approval from the University to offer the Honours with Research programme. Such departments should have minimum two faculty members with Ph.D., and they should also have the necessary infrastructure to offer Honours with Research programme.
- A faculty member of the University/ College with a Ph.D. degree can supervise the research project of the students who have enrolled for Honours with Research. One such faculty member can supervise maximum five students in Honours with Research stream.
- The maximum intake of the department for Honours with Research programme is fixed by the department based on the number of faculty members eligible for project supervision, and other academic, research, and infrastructural facilities available.
- If a greater number of eligible students are opting for the Honours with Research programme than the number of available seats, then the allotment shall be based on the existing rules of reservations and merits.

3.3. GUIDELINES FOR THE PROJECT IN HONOURS PROGRAMME AND HONOURS WITH RESEARCH PROGRAMME

- 1. Project can be in Microbiology or allied disciplines.
- 2. Project should be done individually.
- 3. Project work can be of experimental/theoretical/computational in nature.
- 4. There should be minimum 360 hrs. of engagement from the student in the Project work in Honours programme as well as in Honours with Research programme.
- 5. There should be minimum 13 hrs./week of engagement (the hours corresponding to the three core courses in Major in semester 8) from the teacher in the guidance of the Project(s) in Honours programme and Honours with Research programme.
- 6. The various steps in project works are the following:
 - > Wide review of a topic.
 - Investigation on a problem in systematic way using appropriate techniques.
 - > Systematic recording of the work.
 - > Reporting the results with interpretation in a standard documented form.
 - > Presenting the results before the examiners.

- 7. During the Project the students should make regular and detailed entries in to a personal log book through the period of investigation. The log book will be a record of the progress of the Project and the time spent on the work, and it will be useful in writing the final report. It may contain experimental conditions and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Project supervisor should periodically examine and countersign the log book.
- 8. The log book and the typed report must be submitted at the end of the Project. A copy of the report should be kept for reference at the department. A soft copy of the report too should be submitted, to be sent to the external examiner in advance.
- 9. It is desirable, but not mandatory, to publish the results of the Project in a peer reviewed journal.
- 10. The project report shall have an undertaking from the student and a certificate from the research supervisor for originality of the work, stating that there is no plagiarism, and that the work has not been submitted for the award of any other degree/ diploma in the same institution or any other institution.
- 11. The project proposal, institution at which the project is being carried out, and the project supervisor should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

3.4. EVALUATION OF PROJECT

- The evaluation of Project will be conducted at the end of the eighth semester by both internal and external modes.
- The Project in Honours programme as well as that in Honours with Research programme will be evaluated for 300 marks. Out of this, 90 marks is from internal evaluation and 210 marks, from external evaluation.
- The internal evaluation of the Project work shall be done through continuous assessment mode by a committee internally constituted by the Department Councilof the college where the student has enrolled for the UG Honours programme. 30% of the weightage shall be given through this mode.
- The remaining 70% shall be awarded by the external examiner appointed by the University.

• The scheme of continuous evaluation and the end-semester viva-voce of the Project shall be as given below:

Components of Evaluation of Project	Marks for the Project (Honours/	Weightage
	Honours with Research)	
Continuous evaluation of project work through interim presentations and reports by the committee internally constituted by the Department Council		30%
End-semester viva-voce examination to be conducted by the external examiner appointed by the university	150	50%
Evaluation of the day-to-day records and project report submitted for the end-semester viva—voce examination conducted by the external examiner		20%
Total Marks	300	

INTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/ Honours with Research)
1	Skill in doing project work	30
2	Interim Presentation and Viva-Voce	20
3	Punctuality and Log book	20
4	Scheme/ Organization of Project Report	20
	Total Marks	90

EXTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/ Honours with Research) 12 credits
1	Content and relevance of the Project, Methodology, Quality of analysis, and Innovations of Research	50
2	Presentation of the Project	50
3	Project Report (typed copy), Log Book and References	60
4	Viva-Voce	50
	Total Marks	210

4. GENERAL FOUNDATION COURSES

• All the General Foundation Courses (3-credits) in Microbiology are with only theory component.

4.1. INTERNAL EVALUATION

Sl. No.	Components of Internal Evaluation of a General Foundation Course in Microbiology		
	iviterobiology	4 Theory Modules	Open-ended Module
1	Test paper/ Mid-semester Exam	10	2
2	Seminar/ Viva/ Quiz	6	2
3	Assignment	4	1
		20	5
	Total	otal 25	

4.2. EXTERNAL EVALUATION

External evaluation carries about 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5).

PATTERN OF QUESTION PAPER FOR GENERAL FOUNDATION COURSES

Duration	Туре		No. of Questions to be Answered		
		Questions	to be Answered	Each Question	of Marks
	Short Answer	10	8 - 10	2	16
1.5 Hours	Paragraph/ Problem	5	4 – 5	6	24
	Essay	2	1	10	10
				Total Marks	50

5.LETTER GRADES AND GRADE POINTS

- Mark system is followed for evaluating each question.
- For each course in the semester letter grade and grade point are introduced in 10-point indirect grading system as per guidelines given below.
- The Semester Grade Point Average (SGPA) is computed from the grades as a measure of the student's performance in a given semester.
- The Cumulative GPA (CGPA) is based on the grades in all courses taken after joining the programme of study.
- Only the weighted grade point based on marks obtained shall be displayed on the grade card issued to the students.

LETTER GRADES AND GRADE POINTS

Sl.	Percentage of Marks	Description	Letter	Grade	Range of	Class
No.	(Internal & External		Grade	Point	Grade	
	Put Together)				Points	
1	95% and above	Outstanding	О	10	9.50 - 10	First Class
2	Above 85% and below 95%	Excellent	A+	9	8.50 - 9.49	with
3	75% to below 85%	Very Good	A	8	7.50 - 8.49	Distinction
4	65% to below 75%	Good	B+	7	6.50 - 7.49	
5	55% to below 65%	Above	В	6	5.50 - 6.49	First Class
		Average				
6	45% to below 55%	Average	C	5	4.50 - 5.49	Second Class
7	35% to below 45% aggregate	Pass	P	4	3.50 - 4.49	Third Class
	(internal and external put					
	together) with a minimum of					
	30% in external valuation					
8	Below an aggregate of 35%	Fail	F	0	0 - 3.49	Fail
	or below 30% in external					
	evaluation					
9	Not attending the examination	Absent	Ab	0	0	Fail

• When students take audit courses, they will be given Pass (P) or Fail (F) grade without any credits.

• The successful completion of all the courses and capstone components prescribed for the three-year or four-year programme with 'P' grade shall be the minimum requirement for the award of UG Degree or UG Degree Honours or UG Degree Honours with Research, as the case may be.

5.1. COMPUTATION OF SGPA AND CGPA

• The following method shall be used to compute the Semester Grade Point Average (SGPA):

The SGPA equals the product of the number of credits (Ci) with the grade points (Gi) scored by a student in each course in a semester, summed over all the courses taken by a student in the semester, and then divided by the total number of credits of all the courses taken by the student in the semester,

i.e. SGPA (Si) =
$$\Sigma i$$
 (Ci x Gi) / Σi (Ci)

where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ithcourse in the given semester. Credit Point of a course is the value obtained by multiplying the credit (Ci) of the course by the grade point (Gi) of the course.

$$SGPA = \frac{Sum \ of \ the \ credit \ points \ of \ all \ the \ courses \ in \ a \ semester}{Total \ credits \ in \ that \ semester}$$

ILLUSTRATION - COMPUTATION OF SGPA

Semester	Course	Credit	Letter	Grade	Credit Point
			Grade	point	(Credit x Grade)
I	Course 1	3	A	8	3 x 8 = 24
I	Course 2	4	B+	7	4 x 7 = 28
I	Course 3	3	В	6	3 x 6 = 18
Ι	Course 4	3	О	10	$3 \times 10 = 30$
Ι	Course 5	3	C	5	3 x 5 = 15
I	Course 6	4	В	6	$4 \times 6 = 24$
	Total	20			139
	SGPA				139/20 = 6.950

• The Cumulative Grade Point Average (CGPA) of the student shall be calculated at the end of a programme. The CGPA of a student determines the overall academic level of the student in a programme and is the criterion for ranking the students. CGPA for the three-year programme in CUFYUGP shall be calculated by the following formula.

$$CGPA = \frac{Sum\ of\ the\ credit\ points\ of\ all\ the\ courses\ in\ six\ semesters}{Total\ credits\ in\ six\ semesters\ (133)}$$

CGPA for the four-year programme in CUFYUGP shall be calculated by the following formula.

$$CGPA = \frac{Sum\ of\ the\ credit\ points\ of\ all\ the\ courses\ in\ eight\ semesters}{Total\ credits\ in\ eight\ semesters\ (177)}$$

- The SGPA and CGPA shall be rounded off to three decimal points and reported in the transcripts.
- Based on the above letter grades, grade points, SGPA and CGPA, the University shall issue the transcript for each semester and a consolidated transcript indicating the performance in all semesters.

MAJOR COURSES

No	Course	Sem	Code	Title		
1	Major	I	MBY1CJ 101	Introduction to Microbiology		
2	Major	II	MBY2CJ 101	Basic Techniques in Microbiology		
3	Major	III	MBY3CJ 201	Microbial Physiology		
4	Major	III	MBY3CJ 202	Microbial Metabolism		
5	Major	IV	MBY4CJ 203	Environmental and Sanitation Microbiology		
6	Major	IV	MBY4CJ 204	Soil and Agricultural Microbiology		
7	Major	IV	MBY4CJ 205	Molecular biology		
8	Major	V	MBY5CJ 301	Systemic Bacteriology		
9	Major	V	MBY5CJ 302	Industrial Microbiology		
10	Major	V	MBY5CJ 303	Basic aspects of Immunology		
11	Major	VI	MBY6CJ 304	Food and Dairy Microbiology		
12	Major	VI	MBY6CJ 305	Microbial Biotechnology		
13	Major	VI	MBY6CJ 306	Principles of Genetics		
14	Major	VII	MBY7CJ 401	Biophysics and instrumentation		
15	Major	VII	MBY7CJ 402	Advanced Immunology and Cancer biology		
16	Major	VII	MBY7CJ 403	Microbial Biochemistry		
17	Major	VII	MBY7CJ 404	Mycology and Parasitology		
18	Major	VII	MBY7CJ 405	Antimicrobials and Drug resistance		
19	Major	VIII	MBY8CJ 406	Biostatistics and Bioinformatics		
20	Major	VIII	MBY8CJ 407	Software tools in Research		
21	Major	VIII	MBY8CJ 408	Pharmaceutical Microbiology		
22	Major	VIII	MBY8CJ 489	Research Methodology in biological sciences		

MBY1CJ 101/ MBY1MN100. INTRODUCTION TO MICROBIOLOGY

Programme	B. Sc. Microbiology						
Course Code	MBY1CJ 101/MBY1	MN100					
Course Title	Introduction to Micro	biology					
Type of Course	Major/Minor						
Semester	Ι						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Nil						
Course	This introductory cou	rse covers th	e fundamenta	al aspects of m	icrobiology,		
Summary	exploring microbial	diversity, st	ructure, fund	ction, and its	impacts on		
	human and environmental health. It provides students with theoretical						
	knowledge and pra-	ctical skills	fundamenta	l for further	studies in		
	microbiology and rela	ated fields.					

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the diversity, morphology, and reproduction of bacteria, fungi, and viruses.	U	С	Internal Exam, Assignment, End Semester Examination
CO2	Explain the historical development and scope of microbiology, including the contributions of key scientists.	U	С	Internal Exam, Assignment, End Semester Examination
CO3	Differentiate the fundamental structures of prokaryotic and eukaryotic cells, and describe the major differences.	An	С	Internal Exam, Assignment, End Semester Examination
CO4	Describe the roles of beneficial and harmful microorganisms in various environments.	U	С	Internal Exam, Assignment, End Semester Examination
CO5	Demonstrate basic microbiological laboratory techniques, including microscopy, staining, and culture methods.	Ap	P	Practical Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Modul e	Unit	Content	Hrs (45 +30)	Mark s (70)
I	The N	Microbial World	10	15
	1	Bacterial forms and arrangement of cells.		
	2	Morphology of molds and yeasts		
	3	Sexual and asexual reproduction in fungi.		
	4	Viral morphology and replication processes.		
	5	Structure, lytic cycle, and lysogeny of bacteriophages.		
II	Histo	ry of Microbiology	10	15
	6	Overview of microbiology's scope and its historical		
		development.		
	7	Debate of Spontaneous generation vs. Biogenesis.		
	8	Contributions of Anton van Leeuwenhoek, Joseph Lister,		
		Paul Ehrlich, and other pioneers.		
	9			
III	Fund	amental Structure of Cell	15	25
	10	General structure of prokaryotic and eukaryotic cells and		
		their differences.		
	11	Structures of archaebacteria and eubacteria.		
	12	Detailed analysis of bacterial ultrastructure (e.g.,		
		glycocalyx, capsule).		
	13	Composition and structure of gram-positive and gram-		
		negative cell walls.		
	14	Cell membrane structure, function, and composition in		
		bacteria and archaea.		
	15	Cytoplasmic structures (e.g., ribosomes, inclusion bodies).		
	16	Endospore formation and sporulation stages.		
IV	Benef	ficial & Harmful Microorganisms	10	15
	17	Roles of beneficial soil microbes like PGPR and		
		mycorrhizae.		
	18	Biopesticides and biocontrol agents.		
	19	Beneficial microbes in food industries.		
	20	Application of microbes in pharmaceutical industries.		
	21	Overview of pathogenic bacteria, fungi, protozoa, and		
		viruses.		
	22	Impact of microorganisms on human, animal, and plant		
	<u> </u>	health.		
V	Pract	ical Applications in Microbiology	30	
	1	Introduction to laboratory instruments and safety		
		precautions.		
	2	Common methods of sterilization.		
	3	Microscope maintenance and usage.		

- 1. Atlas, R. M. (1997). Principles of microbiology (2nd ed). Wm. C. Brown Publishers.
- 2. Black, J. G., & Black, L. J. (2018). Microbiology: Principles and explorations (10th edition). Wiley.
- 3. Frobisher, M. (Ed.). (1974). Fundamentals of microbiology (9th ed). W. B. Saunders Co.
- 4. Gladwin, M., Trattler, B., & Mahan, C. S. (2023). Clinical microbiology made ridiculously simple (Edition 9, in color). MedMaster, Inc.
- 5. Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). Brock biology of microorganisms (Sixteenth edition, global edition). Pearson.
- 6. Michael J. Pelczar, Chan, E. C. S., Noel R. Krieg, & Merna Foss Pelczar. (2024). Microbiology (5th edition). Affiliated East-West Press Private Limited.
- 7. Pommerville, J. (2014). Alcamo's fundamental of microbiology (Tenth edition). Jones and Bartlett India Pvt. Ltd.
- 8. Salle, A. J. (2007). Fundamental principles of bacteriology (Reprint of the 2. ed., 6. impression 1943). Envins Press.
- 9. Stanier, R. Y. (2003). General Microbiology. (5th ed). Macmillan.
- 10. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (Thirteenth edition). Pearson.
- 11. Willey, J. M., Sandman, K., Wood, D. H., & Prescott, L. M. (2023). Prescott's microbiology (Twelfth edition, international student edition). McGraw Hill.

	PSO1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	3		3		2	3		3	
CO2	3			2		3		3	3		2	
CO3	3		3			2		3		2	3	
CO4	2	3				2	3	3		2		
CO5		3	3	3					3	3		

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

Course Outcome (CO)	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	✓	✓	✓	
CO2	✓	✓	✓	
CO3	✓	✓	✓	
CO4	✓		✓	
CO5				✓

MBY2CJ 101/ MBY2MN100. BASIC TECHNIQUES IN MICROBIOLOGY

Programme	B. Sc. Microbiology								
Course Code	MBY2CJ 101/ MBY2	MBY2CJ 101/ MBY2MN100							
Course Title	Basic Techniques in 1	Microbiology	y						
Type of Course	Major/Minor								
Semester	II								
Academic Level	100 - 199								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Nil								
Course	This preliminary co	ourse introd	uces the b	asic techniqu	ies used in				
Summary	microbiology. It enab								
	practical knowledge on microscopy techniques, staining methods, media								
	and methods for cult	uring the mi	croorganism	s and culture	preservation				
	strategies.								

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Master the use of various microscopy techniques, including electron, phase contrast, and fluorescence microscopy, to analyze microorganisms.	(U)	(P)	Internal Exam, Assignment, End Semester Examinations
CO2	Execute and differentiate between multiple staining techniques, such as Gram, acid-fast, and capsule staining, to identify and classify microbial structures.	(Ap)	(P)	Internal Exam, Assignment, End Semester Examinations
CO3	Prepare, select, and utilize appropriate culture media for the growth of aerobic and anaerobic microorganisms.	(Ap)	(P)	Internal Exam, End Semester Examinations
CO4	Implement isolation and culture techniques to maintain pure microbial cultures and apply preservation methods for long-term use.	(An)	(P)	Internal Exam, End Semester Examinations
CO5	Demonstrate proficiency in microbiological laboratory techniques through practical application and understanding of	(Ap)	(C)	Practical assessments

theoretical concepts.

Module	Unit	Content	Hrs (45 +30)	Marks (70)
I	MICE	ROSCOPY	10	15
	1	Introduction to microscope-resolving power, numerical		
		aperture, oil immersion objective.		
	2	Types of microscopes -bright field, dark field		
	3	Phase contrast, confocal microscopes		
	4	Fluorescent microscopes		
	5	Electron microscopy - TEM and SEM		
	6	Electron microscopy - sample preparation & fixation,		
		labelling & storage of slides.		
II	STAI	NING	10	15
	7	Mechanism of staining - Basic dyes, Acidic dyes.		
		Bacterial smear preparation and fixation.		
	8	Simple Staining, Differential staining- Gram staining,		
		Acid fast staining,		
	9	Staining specific structures-Endospore staining, Negative		
		staining, Capsule staining, Flagellar staining,		
	10	Fungal staining		
	11	Preparation of permanent slides		
III	CULT	ΓURE MEDIA	15	25
	12	Solid and liquid media, simple and complex, synthetic or defined media.		
	13	Selective, enrichment, enriched media		
	14	differential, indicator media, Transport media		
	15	Anaerobic media- thioglycollate medium, Robertson's		
		media.		
	16	Cultivation of anaerobic bacteria -Production of vacuum,		
		displacement of oxygen with other gases, chemical		
		methods, biological methods and reduction of medium.		
IV	CULT	ΓURE METHODS -	10	15
	17	Isolation of microbes- Dilution plating and enrichment		
		technique.		
	18	Pure culture techniques-Streak, spread, pour plate		
		methods		
	19	Stab culture, stroke culture and lawn culture.		
	20	Culture preservation strategies-regular subculture, paraffin		

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

		method, storage in soil, storage in silica gel		
	21	Storage at refrigerator or cold room storage, storage by		
		freeze drying and drying, preservation under liquid		
		nitrogen		
	22	Microbial culture collections		
\mathbf{V}	Pract	tical Applications in Microbiology	30	
	1	Staining procedures for microorganisms		
	2	Microscopic observation of microorganisms		
	3	Culture media prepartion		
	4	Demonstration/research institute visit - dark field, phase		
		contrast, confocal, fluorescent, Electron microscopes		

- 1. Atlas, R. M. (1997). Principles of microbiology (2nd ed). Wm. C. Brown Publishers.
- 2. Black, J. G., & Black, L. J. (2018). Microbiology: Principles and explorations (10th edition). Wiley.
- 3. Frobisher, M. (Ed.). (1974). Fundamentals of microbiology (9th ed). W. B. Saunders Co.
- 4. Gladwin, M., Trattler, B., & Mahan, C. S. (2023). Clinical microbiology made ridiculously simple (Edition 9, in color). MedMaster, Inc.
- 5. Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). Brock biology of microorganisms (Sixteenth edition, global edition). Pearson.
- 6. Michael J. Pelczar, Chan, E. C. S., Noel R. Krieg, & Merna Foss Pelczar. (2024). Microbiology (5th edition). Affiliated East-West Press Private Limited.
- 7. Pommerville, J. (2014). Alcamo's fundamental of microbiology (Tenth edition). Jones and Bartlett India Pvt. Ltd.
- 8. Salle, A. J. (2007). Fundamental principles of bacteriology (Reprint of the 2. ed., 6. impression 1943). Envins Press.
- 9. Stanier, R. Y. (2003). General Microbiology. (5th ed). Macmillan.
- 10. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (Thirteenth edition). Pearson.
- 11. Willey, J. M., Sandman, K., Wood, D. H., & Prescott, L. M. (2023). Prescott's microbiology (Twelfth edition, international student edition). McGraw Hill.

	PSO	PSO	PSO	PSO4	PSO	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
	1	2	3		5							
CO1	3		2	3	3		3		2	3	3	
CO2	3		3	2	3		3		3	2	3	2
CO3	3		3		2		2		3		3	3
CO4	2	3	3		2		2	3	3		2	
CO5	2		2	3	3		3		2	3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

со	Internal Exam	Assignmen t	End Semester Examinations	Practical Assessment
CO1	✓	✓	✓	✓
CO2	✓	√	✓	✓
CO3	✓		✓	✓
CO4	✓		✓	✓
CO5				√

MBY3CJ 201. MICROBIAL PHYSIOLOGY

Programme	B. Sc. Microbiology							
Course Code	MBY3CJ 201							
Course Title	Microbial Physiology	7						
Type of Course	Major							
Semester	III							
Academic Level	200 - 299							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours			
		per week	per week	per week				
	4	3	-	2	75			
Pre-requisites	Nil							
Course	This course provides	s an in-dept	h understand	ding of micro	obial physiology,			
Summary	covering topics such as nutritional diversity, nutrient transport mechanisms,							
	microbial growth ki	microbial growth kinetics, quantitative measurement of microbes, and						
	reproduction mechan	isms in bacte	ria.					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyze the nutritional requirements and diversity in microorganisms.	(An)	(C)	Quizzes, Midterm Exam
CO2	Explain nutrient transport mechanisms and their significance in microbial physiology.	(U)	(C)	Assignments, Instructor-created exams
CO3	Evaluate factors affecting microbial growth and growth kinetics in batch and steady state systems	(E)	(P)	End Semester Examinations, Practical assessments
CO4	Assess various quantitative methods for enumeration of bacteria and virus.	(An)	(P)	End Semester Examinations, Practical assessments
CO5	Demonstrate methods for culturing, quantifying, and analyzing microbial growth in practical settings.	(Ap)	(P)	Practical assessments, Lab Reports

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	ed Sylla Unit	Content	Hrs (45+30)	Marks (70)
I	Micro	bial Nutrition and Nutritional Diversity	10	15
	1	Nutritional requirements of bacteria: Major and Minor		
		Elements.		
	2	Nutritional Diversity in Microorganisms.		
	3	Nutritional Types: Autotrophy, Heterotrophy,		
		Chemotrophy, Phototrophy, Lithotrophy, and		
		Organotrophy.		
	4	Acetogens and Methanogens: Methanogenesis and its		
		importance.		
	5	Major Nutritional Groups of Bacteria: Classification and its		
		role.		
II	Nutrie	nt Transport Mechanisms	10	15
	6	Diffusion, Osmosis, Active Transport, Passive Transport,		
		Group Translocation		
	7	Electrogenic and Electroneutral Transport with examples		
	8	Quorum Sensing – Mechanism and Signalling Molecules.		
	9	Ion Channels and pumps in bacteria		
III	Micro	bial Growth	15	20
	10	Factors affecting Microbial growth – Temperature		
	11	Factors affecting Microbial growth – pH		
	12	Factors affecting Microbial growth – Oxygen, Radiation,		
		Water activity		
	13	Growth curve and its significance		
	14	Growth Kinetics- Batch system, Steady state system		
	15	Synchronous culture		
	16	Diauxic culture		
IV	Bacter	ial and Viral Quantitation Methods	10	20
	17	Quantitative measurement of bacterial growth by direct		
		methods		
	18	Quantitative measurement of bacterial growth by indirect		
		methods		
	19	Viral quantitative techniques - Plaque assay and Pock		
		assay		
	20	Viral Cultivation methods		
	21	Modes of reproduction in bacteria- fission, budding,		
		fragmentation,		
	22	Mechanism of sporulation.		

V Practio	als	30	30
23	 Isolation of bacteria by Pure Culture Techniques. Effects of temperature, pH, and aeration on microbial growth. Bacterial Growth curve Enumeration of bacteria by indirect methods - Spread and Pour plate techniques. Enumeration of bacteria by Direct Methods - Breeds Count, Petroff Hausser Chamber 		

- 1. Moat, A. G., Foster, J. W., & Spector, M. P. (2002). *Microbial Physiology* (4th ed.). Wiley-Liss.
- 2. Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2014). *Brock Biology of Microorganisms* (14th ed.). Pearson.
- 3. Tortora, G. J., Funke, B. R., & Case, C. L. (2018). *Microbiology: An Introduction* (13th ed.). Pearson.
- 4. Black, J. G. (2012). Microbiology: Principles and Explorations (8th ed.). Wiley.
- 5. Atlas, R. M. (2010). Principles of Microbiology. McGraw-Hill Education.
- Foster, J. W., & Hall, H. K. (1996). Microbial responses to environmentally induced stress. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, & H. E. Umbarger (Eds.), Escherichia coli and Salmonella: Cellular and Molecular Biology (Vol. 2, pp. 1526-1539). ASM Press.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
			3									
CO1	3		2		3		3		2		3	
CO2	2		3		2		2		3		2	
CO3		3		3				3		3		3
CO4			3	2					3	2		2
CO5				3	3					3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

<u>appins</u>	01 CO3 tO 11	ssessificht Rubii	C 5 •	
СО	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	√	✓	√	
CO2	✓	✓	✓	
CO3	✓		✓	✓
CO4		✓	✓	✓
CO5				✓

MBY3CJ 202. MICROBIAL METABOLISM

Programme	B. Sc. Microbiology						
Course Code	MBY3CJ 202/MBY3	MN 200					
Course Title	Microbial Metabolism	n					
Type of Course	Major/Minor						
Semester	III						
Academic Level	200 - 299						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Nil						
Course	This introductory co	urse covers	the fundame	ntal aspects of	of Microbial		
Summary	Metabolism. It invol	ves converti	ng nutrients	into energy a	and essential		
	biomolecules like	ATP, crucia	1 for micro	organism su	rvival. Key		
	pathways like glycol	ysis and the	Krebs cycle	drive energy	production.		
	Microbes adapt to diverse environments by utilizing various carbon and						
	nitrogen sources. U				is vital for		
	biotechnology, indust	try, and envi	conmental so	lutions.			

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain the nutritional requirements and types of bacteria based on energy, carbon, and electron sources.	U	F	Internal Exam, Assignment, End Semester Exam
CO2	Describe key metabolic pathways, including respiration and fermentation in microbial systems.	U	С	Internal Exam, Assignment, End Semester Exam
CO3	Analyze chemoheterotrophic and chemolithotrophic metabolism, focusing on energy production mechanisms.	An	С	Internal Exam, End Semester Exam
CO4	Evaluate microbial metabolic strategies in environmental adaptation and biotechnological applications.	Е	M	Internal Exam, End Semester Exam
CO5	Perform and interpret experiments related to microbial growth curves, biofilm formation, and metabolic pathways.	Ap	P	Practical Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Metacognitive Knowledge (M)

Detailed Syllabus:

Module	Unit	Content	Hrs (45+30)	Marks (70)
I	Nutrit	ional requirements of bacteria	10	15
	1	C, electron, energy, and minerals. Nutritional types of		
		bacteria- based on the requirement and their combinations		
	2	Modes of bacterial nutrition.		
	3	Transport of nutrients by bacteria		
	4	Passive, active and group translocation		
	5	Symport, antiport and uniport, electrogenic and		
		electroneutral transport, transport of iron		
II	Chemo	oheterotrophic Metabolism - Aerobic Respiration	10	15
	6	Concept of aerobic respiration		
	7	Sugar degradation pathways i.e. EMP, ED, Pentose		
		phosphate pathway. TCA cycle.		
	8	Electron transport chain		
	9	Components of respiratory chain, comparison of		
		mitochondrial and bacterial ETC, electron transport		
		phosphorylation		
III	Chemo	oheterotrophic Metabolism- Anaerobic respiration and	15	20
		ntation		
	10	Anaerobic respiration with special reference to dissimilatory		
		nitrate reduction		
	11	Fermentation - Alcohol fermentation		
	12	Pasteur effect;		
	13	Lactate fermentation		
	14	Homofermentative		
	15	Concept of linear and branched fermentation pathways.		
	16	Heterofermentative pathways		
IV	Chemo	olithotrophic and Phototrophic Metabolism	10	20
	17	Introduction to aerobic and anaerobic chemolithotrophy		
	18	Hydrogen oxidation (definition and reaction) and		
		methanogenesis (definition and reaction).		
	19	Introduction to phototrophic metabolism		
	20	Groups of phototrophic microorganisms		
	21	Anoxygenicvs. oxygenic photosynthesis with reference to		
		photosynthesis in green bacteria		
	22	Purple bacteria and cyanobacteria.		
V	Practi	cal Applications in Microbiology	30	
	1	Growth curve of bacteria		
	2	Carbohydrate fermentation by different microbes		+
	3	Thermal death point, Thermal death time		+
	3	Thermal death point, Thermal death time		+

Reference:

- Madigan, M. T., & Martinko, J. M. (2014). *Brock Biology of Microorganisms* (14th ed.). PrenticeHall International Inc.
- Moat, A. G., & Foster, J. W. (2002). Microbial Physiology (4th ed.). John Wiley & Sons.
- Reddy, S. R., & Reddy, S. M. (2005). *Microbial Physiology*. Scientific Publishers India.
- Gottschalk, G. (1986). Bacterial Metabolism (2nd ed.). Springer Verlag.
- Stanier, R. Y., Ingrahm, J. I., Wheelis, M. L., & Painter, P. R. (1987). *General Microbiology* (5th ed.). McMillan Press.

Mapping of COs with PSOs and POs:

•	PSO1	PSO 2		PSO4		PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	3		3	2	3		3		
CO2	3		2	3	3	3	3	2	1			
CO3	3	3		2	3	2	3	1			2	
CO4	2	3		3		3	3	2	2			
CO5		3	3	3		1	2	3	3			

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

	Internal Exam	Assignment	Practical Assessment	End Semester Exam
CO1	√	✓		√
CO2	√	✓		✓
CO3	√			✓
CO4	✓			✓
CO5			√	

MBY4CJ 203. ENVIRONMENTAL AND SANITATION MICROBIOLOGY

Programme	B. Sc. Mici	B. Sc. Microbiology					
Course Code	MBY4CJ 2	203					
Course Title	Environme	ental and Sanitation M	icrobiology				
Т	Maian						
Type of	Major						
Course							
Semester	IV						
Academic	200 - 299	200 - 299					
Level							
Course Details	Credit	Lecture per week	Tutorial	Practical	Total Hours		
			per week	per week			
	4	3	-	2	75		
Pre-requisites	Nil						
Course	This course explores the role of microorganisms in environmental and						
Summary	sanitation contexts, focusing on their impact on air and water quality, waste						
		nt, and their use in bio			1 .		

Course Outcomes (CO): .

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand microbial dynamics in air and their implications on	(U)	(C)	Internal Exam, End Semester
	health.		` ,	Exam
CO2	Evaluate methods of microbial sampling and monitoring in environmental settings.	(E)	(P)	Practical Assessments, Assignments
СОЗ	Analyze aquatic ecosystems and the role of microbes in water quality management.	(An)	(C)	Assignments, End Semester Exam
CO4	Apply microbial techniques for solid waste management and bioremediation.	(Ap)	(P)	Practical Assessments
CO5	Discuss the impact of microbial processes on pollution control and environmental restoration.	(U)	(C)	Internal Exam, Assignments

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
Metacognitive Knowledge (M)

Modul e	Unit	Content	Hrs (45 +30)	Mark s -70
I	Microbiolo	ogy of air	10	15
	1	Atmospheric layers, organisms in air, distribution and sources		
	2	Disease forecasting in plants		
	3	Indoor and outdoor air		
	4	Droplet nuclei, aerosol, infectious dust		
	5	Microbiological sampling of air - gravity slide, plate exposure, vertical cylinder, Hirst spore trap, Rotorod sampler, Andersen sampler, hand held air sampler, impingers and filtration. Advantages and disadvantages of these techniques		
	6	Brief account of air borne transmission of harmful microbes and air borne infections		
II	Aquatic Mi	crobiology	10	15
	7	Aquatic environment, distribution of microorganisms in aquatic environment - fresh water, estuarine and marine water systems		
	8	Factors influencing growth and distributions		
	9	Water Purification procedures for single dwelling and municipal water supplies		
	10	Concept of indicator organisms, Microbiological examination of water. BOD, COD		
	11	Wastewater treatment steps and methods		
	12	Eutrophication and algal bloom		
	13	Brief account of water borne diseases and transmission		
III		e Management	15	25
	14	Sources and types of solid waste		
	15	need for management		
	16	Landfills, composting, vermi- composting, anaerobic digesters, methanogenesis and production of biogas		
	17	Design and management of biogas plants		
IV	Bioremedia		10	15
	18	Novel pollutants, persistence and biomagnification		

	19	Recalcitrant halocarbons- nitroaromatic compounds, PCB, alkyl benzene sulphonates	
	20	Petroleum hydrocarbons - their biodegradation	
	21	Bioremediation of polluted environment - Oil spills, heavy Metals and other xenobiotics.	
	22	Microbial leaching and corrosion of metals	
V	Open ende	d	
	1	Marine Natural products from marine microorganisms- antibiotics, toxins, organic acids, biosurfactants, pigments, biopolymers and enzymes	
	2	Waste management strategies in the local bodies: Discussion, Visit, evaluation, suggestion for improvements	

- 1. Textbook of Biochemistry by Lehninger
- 2. Biochemistry by Stryer
- 3. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA,
- 4. Weiner AAM, 1987. The Benjamin/Cummings publishing company.
- 5. Genes V by Lewin B, 1994. Oxford University Press.
- 6. Molecular Cell Biology by Lodish, H, Baltimore D, Berk A, Zipursky SL, Matsudaira
- 7. Darnell J., 1995. Scientific American Books.
- 8. Molecular Biology by Freifelder D., 1991 Narosa Publishing Home.
- 9. Principles of Gene Manipulation, 4th Ed., by R.S.Old and S.B.Primrose. 1989. Blackwell Scientific Publications, London
- 10. Cell Biology by Karp

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2		1			3	2	1		2	1
CO2	2	3	3	2			2	1	3	2	3	2
CO3	1	2	3		2	1	2	3	2	1	1	3
CO4	3		2	3	1	2	1	2	3	3	2	1
CO5	2	1		2	3		3	2	1	2	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

CO	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	✓		✓	
CO2		√		✓
CO3		✓	✓	
CO4				✓
CO5	✓	√		

MBY4CJ 204. SOIL AND AGRICULTURAL MICROBIOLOGY

Programme	B. Sc. Microbiology							
Course Code	MBY4CJ 204							
Course Title	Soil and Agricultural	Microbiolog	gy					
Type of Course	Major							
Semester	IV							
Academic	200 - 299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week per week per week Hours						
	4	3	-	2	75			
Pre-requisites	Basic knowledge of r	nicroorganis	ms during pro	evious years o	of this			
	program							
Course	This course provides	a comprehe	ensive overvi	iew of soil m	icrobiology,			
Summary	biogeochemical cycle	es, biologica	1 interactions	s, and the app	plications of			
	microbes in agricul				-			
	pathology. Overall, it offers a deep understanding of how							
	microorganisms, soil health, and plant diseases are interconnected,							
	providing practical in	sights for su	stainable agri	icultural pract	ices.			

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the general properties of soil and the role of microorganisms in soil health.	(U)	(C)	Internal Exam, Midterm Exam
CO2	Outline the role of microorganisms in biogeochemical cycling and their implications on soil fertility.	(R)	(F)	Assignments, End Semester Exam
СОЗ	Develop a better knowledge of the interaction of microorganisms with each other and with plants and animals.	(U)	(C)	Instructor- created Exams, Quizzes
CO4	Understand the role of microbes as biofertilizers and biopesticides in agriculture and their advantage over chemical counterparts.	(E)	(P)	Internal Exam, End Semester Exam
CO5	Develop practical skills in the isolation, enumeration, and identification of microbes from soil and plants.	(Ap)	(P)	Practical Assessments, Lab Reports

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (45 +30)	Marks (70)
I		duction to soil Microbiology	10	15
	1	Properties of soil (structure, texture, formation)	1	
	2	Types of soil microorganisms	1	
	3	Role of microorganisms in soil fertility	1	
	4	Factors affecting microbial population in soil- moisture, pH,	2	
		temperature, organic matter, agronomic practices, etc		
	5	Humus formation and its significance	2	
	6	Biogeochemical cycle- Role of microorganisms in Carbon,	2	
		Phosphorous, Nitrogen, and sulfur cycles.		
	7	Soil fertility tests	1	
II		gical Interactions	10	15
	8	Microbe-Microbe Interactions- Mutualism, Synergism, Commensalism	3	
	9	Microbe-Microbe Interactions- Competition, Amensalism, Parasitism, Predation.	3	
	10	Microbe-Plant Interactions. Roots- Rhizosphere and	2	
	1.1	Mycorrhizae, Aerial Plant surfaces	2	
	11	Microbe- Animal Interactions. Role of Microbes in	2	
		Ruminants, Nematophagus fungi, Luminescent bacteria as		
III	Annl	Symbiont	15	25
1111		ications of microbes in agriculture : Biofertilizers & esticides	15	25
	12	Symbiotic nitrogen fixation - (Rhizobium, Frankia)	2	
	13	Symbiotic nutrient mobilizers - Endomycorrhizae and	2	
	1.4	Ectomycorrizae	1	
	14	Non symbiotic microbes - Azotobacter	1	
	15	Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc. Gloeocapsa), Azolla-Anabaena System	3	
	16	Bio pesticides- bacterial, fungal and viral biopesticides	3	
	17	Advantages of biofertilizers and biopesticides over	2	
		their chemical counterparts		
	18	Effect of pesticides on soil microflora	2	
IV		pathology	10	15
	19	Plant pathology- symptoms, disease cycle, and control	2	
		measures		
	20	Bacterial diseases - Angular leaf spot of cotton,	3	
		bacterial leaf blight of rice, crown galls, bacterial		
	0.1	cankers of citrus		
	21	Fungal disease- Wilt of tomato -Fusariumoxysporum,	3	

		Red rot of sugarcane - Colletotrichumfalcatum, Early		
		blight of potato -Alternariasolani, Wilt of cotton		
	22	Viral diseases- Papaya ringspot, tomato yellow leaf	2	
		curl, banana bunchy top		
V	Pract	ical Applications in Soil & Agricultural Microbiology	30	
	1	Isolation of Rhizobium and Azotobacter		
	2	Ammonification and nitrification of organic		
		compounds		
	3	Enumeration of bacteria, fungi and actinomycetes from		
		soil		
	4	Isolation of plant pathogenic bacteria		
	5	Isolation of plant pathogenic fungi		

- 1. Microbial Ecology. John Wiley & Sons, Inc., New York 2.
- 2. Introduction to Soil Microbiology by Alexander, M.(1977). John Wiley & Sons, Inc.,
- 3. Agricultural microbiology, 2nd edition. Rangaswami G., Bagyaraj D. J. Prentice hall of India.
- 4. Ronald M. Atlas., Richard Bartha. Microbial Ecology. Benjamin Cummings. 1998
- 5. Robert, L Tate (1995). Soil Microbiology. First edition, John Wiley and Sons, Inc. New York edition. Pearson Education.
- 6. Rangaswami G and Mahadevan A (2002). Disease of Crop Plants in India. Fourth edition,PHI Learning (P) Ltd., New Delhi.
- 7. Subba Rao NS (2004). Soil Microbiology. Fourth edition, Oxford and IBH Publishing Co.Pvt. Ltd., New Delhi.
- 8. Mishra RR (2004). Soil Microbiology. First edition, CBS Publishers and distributors, New Delhi.
- 9. Devlin RM. (1975). Plant Physiology. 3rd edition, Willard Grant Press.
- 10. Stolp H. (1988). Microbial Ecology: Organisms Habitats Activities. Cambridge University Press, Cambridge, England.
- 11. Agrios GN. (2006). Plant Pathology. 5th edition. Academic press, San Diego
- 12. Lucas JA. (1998). *Plant Pathology and Plant Pathogens*. 3rd edition. Blackwell Science, Oxford.
- 13. Mehrotra RS. (1994). Plant Pathology. Tata McGraw-Hill Limited.
- 14. Rangaswami G. (2005). *Diseases of Crop Plants in India*. 4th edition. Prentice Hall of India Pvt. Ltd., New Delhi.
- 15. Singh RS. (1998). *Plant Diseases Management*. 7th edition. Oxford & IBH, New Delhi.
- 16. Raina M.Maier. Ian L.Pepper and Charles P.Gerba. (2000)EnvironmentalMicrobiology.Academic press California.UK

	-											
CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3						3				2	
CO2	2						2		3		2	2
CO3	3		3						3		3	3
CO4		3		3				3		3		
CO5			3		3					3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

со	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	✓		✓	
CO2	✓	√	✓	
CO3	✓		✓	
CO4	√		✓	
CO5				√

MBY4CJ205. MOLECULAR BIOLOGY

Programme	B. Sc. Microbiology					
Course Code	MBY4CJ205					
Course Title	Molecular biology					
Type of Course	Major					
Semester	IV					
Academic Level	200 - 299					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	Nil					
Course	This course delves	into molecu	lar biology's	fundamenta	l principles,	
Summary	focusing on the struct	ure, function	, and interact	ions of biomo	lecules such	
	as DNA, RNA, proteins, and lipids. Students explore the intricate					
	mechanisms that driv		_	enetic inherita	ance through	
	lectures, laboratory se	essions, and o	discussions.			

Course Outcomes (CO):

СО	CO Statement	Cognitiv e Level*	Knowledge	Evaluation Tools used
CO1	Understand the fundamental aspects of nucleic acids and their role as genetic material.	(U)	Category# (C)	Internal Exam, End Semester Examination
CO2	Evaluate the mechanisms of DNA replication, mutation, and repair in prokaryotes and eukaryotes.	(E)	(P)	Assignments, End Semester Examination
СОЗ	Analyze the processes of transcription and translation, and their regulation in prokaryotes and eukaryotes.	(An)	(P)	Assignments, End Semester Examination
CO4	Apply knowledge of genetic mutations to practical scenarios in molecular biology.	(Ap)	(P)	Internal Exam, Practical Assessments
CO5	Demonstrate practical skills in molecular biology techniques, including DNA, RNA isolation, and gene expression analysis.	(Ap)	(P)	Practical Assessments

 $^{*-}Remember\ (R),\ Understand\ (U),\ Apply\ (Ap),\ Analyse\ (An),\ Evaluate\ (E),\ Create\ (C)$

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (45 +30)	Marks -70
I	Basic	Concept of Genetic Materials	10	15
	1	Nucleic acid as the genetic material (Experimental proof)	1	
	2	Structure and functions of Nucleic acids, types and different forms	2	
	3	Organisation of bacterial and eukaryotic chromosomes, Histone and their functions	3	
	4	Denaturations and renaturations, Cot curve	2	
	5	DNA topology - linking number, topoisomerases	2	
II	Replic	ation of DNA	10	15
	6	Semi-conservative model of DNA	2	
	7	Features of prokaryotic DNA replication.	3	
	8	Mechanism of eukaryotic DNA replication.	3	
	9	Models of replication in the circular DNA- D-Loop, rolling circle and theta model.	2	
III	Mutat	ion	10	25
	10	Chromosomal Mutations: Deletion, Duplication, Inversion, Translocation,	2	
	11	Aneuploidy and Polyploidy.	1	
	12	Gene mutations: definition and types	1	
	13	Induced versus Spontaneous mutations	1	
	14	Back versus Suppressor mutations	2	
	15	Molecular basis of Mutations about UV light and chemical mutagens	1	
	16	Detection of mutations-Ames test, Replica plating. Concept of Luria Delbruck experiment	2	
IV		expression Mechanisms	15	15
	17	Transcription- prokaryotic and eukaryotic.	3	
	18	Post-transcriptional modifications	2	
	19	Translation- prokaryotes and eukaryotes	4	
	20	Genetic code.	1	
	21	Post-translational modifications	2	
	22	A brief account of gene regulation in prokaryotes - operon concept - lac and trp operon.	3	
V	Practi	cal Applications in Microbiology	30	
	1	Preparation of buffers		

	2	Demonstration of mitosis.	
	3	Isolation of genomic DNA from <i>E. coli</i> . and agarose gel electrophoresis	
	4	Estimation of DNA.	
	5	Isolation of RNA.	
	6	Estimation of RNA.	

- 1. Textbook of Biochemistry by Lehninger
- 2. Biochemistry by Stryer
- 3. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA,
- 4. Weiner AAM, 1987. The Benjamin/Cummings publishing company.
- 5. Genes V by Lewin B, 1994. Oxford University Press.
- 6. Molecular Cell Biology by Lodish, H, Baltimore D, Berk A, Zipursky SL, Matsudaira P
- 7. Darnell J., 1995. Scientific American Books.
- 8. Molecular Biology by Freifelder D., 1991 Narosa Publishing Home.
- 9. Principles of Gene Manipulation, 4th Ed., by R.S.Old and S.B.Primrose. 1989. Blackwell Scientific Publications, London
- 10. Cell Biology by Karp

СО	PSO1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3						3				2	
CO2	2	3					2	2	3		3	2
CO3	3	3	3				3		3		3	3
CO4		3		3				3		3		
CO5			3		3					3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	✓		✓	
CO2		✓	✓	✓
CO3		✓	✓	✓
CO4	✓		✓	✓
CO5			√	√

MBY5CJ 301. SYSTEMIC BACTERIOLOGY

Programme	B. Sc. Microbiology								
Course Code	MBY5CJ 301								
Course Title	Systemic Bacteriolog	У							
Type of Course	Major								
Semester	V								
Academic Level	300-399	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Nil								
Course	This course delves	into the n	norphology,	pathogenesis	laboratory				
Summary	diagnosis, epidemiology, prevention, and control of diseases caused by								
	_	critical bacterial groups. It covers gram-positive and gram-negative cocci							
	and bacilli, AFB, spir	ochetes, and	obligate intr	acellular bacte	eria				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand the pathogenic mechanisms and diagnostic methods for grampositive cocci.	(U)	(C)	Internal Exam, Midterm Exam
CO2	Describe the impact and control strategies of gram-negative bacilli on public health.	(R)	(F)	Assignments, End Semester Exam
СОЗ	Evaluate the laboratory and clinical diagnosis techniques for AFB and spirochetes.	(E)	(P)	Internal Exam, End Semester Examination
CO4	Apply knowledge of bacterial pathogenesis to develop prevention and control measures.	(Ap)	(P)	Internal Exam, End Semester Examination
CO5	Analyze the epidemiology of diseases caused by obligate intracellular bacteria.	(An)	(C)	Internal Exam, End Semester Examination

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Module	Unit	Content	Hrs (45 +30)	Marks -70
I	diagnosis, Epider	Cultural Characteristics, Pathogenesis, Laboratory niology, Prevention and control of diseases caused and Gram Negative Cocci	10	15
	1	Staphylococcus aureus,		

Metacognitive Knowledge (M)

	6	Demonstration of precipitation reactions		
	5	Blood grouping		
	4	Differential count of leukocytes		
	3	AFB staining		
	2	Identification of bacteria via morphological, cultural characteristics, metabolic and biochemical features		
	1	Isolation and identification of Clinically important bacteria from various samples - Urine, Sputum, blood, pus etc.		
V	Practical		30	30
	22	Rickettsiae and Chlamydiae.		
	21	Mycoplasma		
	20	Leptospira interrogans,		
	19	Treponema pallidum		
	18	Mycobacterium leprae,		
	17	Mycobacterium tuberculosis,		
IV	diagnosis, Epi	and Cultural Characteristics, Pathogenesis, Laboratory demiology, Prevention and control of diseases caused ochetes and obligate intracellular bacteria	13	20
	16	Brucella, Yersinia pestis		
	15	Bordetella pertrussis,		
	14	Helicobacter pylori,Hemophilus influenzae,		
	13	Vibrio cholerae,Pseudomonas aeruginosa		
	12	Klebsiella pneumoniae, Proteus		
	11	Salmonella typhi		
	10	Escherichia coli, Shigella dysentriae,		
III	by Gram nega	demiology, Prevention and control of diseases caused tive bacilli	12	20
***		and Cultural Characteristics, Pathogenesis, Laboratory	10	20
	9	Corynebacterium diphtherieae		
	8	Clostridium tetani,		
	7	Clostridium botulinum,		
	6	Bacillus anthracis,		
11	by Gram posit		10	1.
II		and Cultural Characteristics, Pathogenesis, Laboratory demiology, Prevention and control of diseases caused	10	15
	5 Manufactures	Neisseria meningitidis		
	4	Neisseria gonorrhoeae		
	3	Streptococcus pyogenes,		
		Streptococcus pneumoniae,		

7	Demonstration of agglutination reactions	

- 1. Brooks GF, Carroll KC, Butel JS and Morse SA. (2007). Jawetz, Melnick erg's Medical Microbiology.24th edition. McGraw Hill Publication.
- 2. Goering R, Dockrell H, Zuckerman M and Wakelin D. (2007). Mims' Medical Microbiology. 4th edition.
- 3. Elsevier. Joklik WK, Willett HP and Amos DB (1995). Zinsser Microbiology. 19th edition. Appleton- CenturyCrofts publication.
- 4. Willey JM, Sherwood LM, and Woolverton CJ. (2008). Prescott, Harley and Klein's Microbiology. 7th edition. McGraw Hill Higher Education.
- 5. Medical Microbiology: David Greenwood, Slack, Peutherer
- 6. Satish Gupte (2005). The Short Textbook of Medical Microbiology. Eighth edition, Jaypee Brothers, Medical publishers (P) Ltd., New Delhi.
- 7. Baron EJ, Peterson LR and Finegold SM (1994). Bailey and Scott's diagnostic Microbiology. 9th edition, Mosby publications.
- 8. Rajan S (2009). Medical Microbiology. First edition, MJP Publishers, Chennai.
- 9. Rajesh Bhatia and Ratan Lal Ichhpujani (2004). Essentials of Medical Microbiology. Third edition, Jaypee Brothers, Medical Publishers (P) Ltd., New Delhi.
- 10. Medical Microbiology by Macie and McCartney
- 11. Ananthanarayan R and Paniker CKJ. (2005). Textbook of Microbiology. 7th edition (edited by Paniker CKJ).

	8											
CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2			1		3	2	1		3	
CO2	2	3				2	2	3	2		2	1
CO3	1	2	3		2		1	2	3	2	3	
CO4		3	2	3				3	2	3		2
CO5	3		1		3		3		2		3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

CO	Internal Exam	Assignment End Semester Examination		Practical Assessment
CO1	✓		✓	
CO2	✓	✓	✓	
CO3		✓	✓	✓
CO4	√		✓	√
CO5	✓		✓	✓

MBY5CJ 302-INDUSTRIAL MICROBIOLOGY

TIDIOCO COL ITADESTIMIE MICHODICE CI								
Programme	B. Sc. Microbiology							
Course Code	MBY5CJ 302							
Course Title	Industrial Microbiology							
Type of Course	Major							
Semester	V							
Academic Level	300 - 399							
Course Details	Credit Lecture Tutorial Practical							
	per week per week per week Hours							
	4 3 - 2 75							
Pre-requisites	Nil							
Course	This course covers the application of microbiology in the industrial sector,							
Summary	focusing on the processes of fermentation and the production of valuable							
	products from microbes. The course includes practical sessions to							
	enhance understanding of industrial applications.							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the basic principles and processes involved in industrial microbiology.	U	F	Quizzes, Internal Exam
CO2	Describe the design and operation of fermenters and their role in industrial fermentation.	U	С	Assignments, Internal Exam
CO3	Identify and apply methods for the cultivation of industrially important microorganisms.	Ap	P	Practical Assessments
CO4	Analyze methods for the downstream processing and purification of fermentation products.	An	P	Internal Exam, Practical Assessments
CO5	Evaluate the production and practical applications of microbial products in industry.	E	C	Project Evaluation, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

Detailed			1		
Module	Unit	Content	Hrs (45+30)	Mark s (70)	
I	Fund	10	15		
	1	Introduction to Industrial Microbiology - Scope and			
		importance in various industries.			
	2				
		discoveries and advancements.			
	3	Principles of Fermentation - Overview of fermentation			
		processes.			
	4	Fermenter Design and Operation - Basic design features			
		and operational parameters.			
	5	Types of Fermentation Processes I - Batch fermentation.			
	6	Types of Fermentation Processes II - Continuous and fed-			
		batch fermentation.			
II	Indus	strial Microorganisms and Media	12	20	
	7	Overview of Industrially Important Microorganisms -			
		Characteristics and selection criteria.			
	8	Isolation and Screening of Microorganisms - Techniques			
		for finding industrially valuable strains.			
	9	Improvement of Microbial Strains - Genetic manipulation			
		and adaptive evolution.			
	10	Culture Preservation Techniques - Methods for			
		maintaining industrial microorganisms.			
	11	Development of Fermentation Media - Nutrient			
		requirements and media optimization.			
Ш		nstream Processing	13	20	
	12	Overview of Downstream Processing - Introduction to			
		product recovery and purification.			
	13	Cell Disruption Methods - Mechanical and non-			
		mechanical disruption techniques.			
	14	Primary Separation Techniques - Filtration and			
		centrifugation.			
	15	Concentration and Purification Techniques I -			
		Precipitation and dialysis.			
	16	Concentration and Purification Techniques II -			
		Chromatographic methods.			
IV		ucts and Applications	10	15	
	17	Production of Primary Metabolites - Alcohols and organic			
	10	acids.			
	18	Production of Secondary Metabolites - Antibiotics and			
	4.0	vitamins.			
	19	Enzyme Production - Methods and applications in			
		industry.			

20 Biopolymers and Biofuels - Production techniques and industry uses. Food and Beverage Industry Applications - Microbial 21 roles in food production. 22 Recent Advances and Future Trends in Industrial Microbiology **Practical 30** Cell disruption techniques 2 Ammonium Sulfate precipitation 3 Dialysis 4 Thin Layer Chromatography 5 Citric acid production Wine production 6

- 1. Prescott, L. M., Harley, J. P., & Klein, D. A. (2002). *Microbiology* (6th ed.). McGraw-Hill Higher Education.
- 2. Crueger, W., & Crueger, A. (1990). *Biotechnology: A Textbook of Industrial Microbiology*. Sinauer Associates Inc.
- 3. Demain, A. L., & Adrio, J. L. (2008). Biotechnology of Microbial Products. Springer.
- 4. Waites, M. J., Morgan, N. L., Rockey, J. S., & Higton, G. (2001). *Industrial Microbiology: An Introduction*. Blackwell Science.
- 5. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2017). *Principles of Fermentation Technology* (3rd ed.). Butterworth-Heinemann.

СО	PSO1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	1	1			3	2	1		2	1
CO2	3	2	1	1			2	3	1	2	1	
CO3	2	3	2	1			2	3	2	1	2	1
CO4	1	2	3	2	1		1	2	3	2	1	2
CO5	1	1	2	3	2	1	1	1	2	3	2	1

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

CO	Internal Exam	Assignment End Semeste Examination		Practical Assessment	
CO1	√				
CO2	√	✓			
CO3				✓	
CO4	√			✓	
CO5			✓	✓	

MBY5CJ 303. BASIC ASPECTS OF IMMUNOLOGY

Programme	B. Sc. Microbiolo	ogy			
Course Code	MBY5CJ 303				
Course Title	Basic aspects of in	mmunology	y		
Type of Course	Major				
Semester	V				
Academic Level	300-399				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per	per week	per week	Hours
		week			
	4	4	-		60
Pre-requisites					
Course Summary	This course pro response, differer offers a detailed and functions, mactivation types immunity and immunity a	nt cells invidescription nonoclonal etc. Stude	on antigen antibody p nts can ga	nmune responding and antibod roduction, c in an overa	onse etc. It y, its types omplement

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the fundamental principles of the immune system and its components.	U	С	Internal Exam, End Semester Exam
CO2	Analyze the types and functions of antigens and antibodies.	An	C	Assignments, Practical Assessments
СОЗ	Evaluate the mechanisms of immune response and their clinical applications.	E	Е	Assignments, End Semester Exam
CO4	Discuss the role of MHC in immune processes and disease susceptibility.	U	С	Internal Exam, Assignments
CO5	Apply immunological techniques in experimental and diagnostic settings.	Ap	С	Practical Assessments

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed			TT	3.7.1
Module	Unit	Content	Hrs	Marks
I	Uisto	my and saans of immunalagy	(48 +12) 12	(75) 15
1	1	ry and scope of immunology Contributions of scientists – Edward Jenner, Karl	12	13
	1	Landsteiner, Robert Koch, Paul Ehrlich, Elie		
		Metchnikoff and Rodney Porter.		
	2	Innate immunity		
	3	Acquired immunity – Active and Passive immunity		
	4	Mechanism of innate immunity – physical, chemical,		
		cellular, molecular etc		
II	Struc	ture ,Functions and Properties of immune cells	12	15
	5	Hematopoiesis and stem cells	12	10
	6	Cells of immune system – lymphocytes,		
		macrophage, leukocytes, mast cells, dendritic cells.		
	7	Primary lymphoid organs – Thymus and Bone		
		marrow		
	8	Secondary lymphoid organs – lymph node, spleen,		
		MALT		
III	Antig	gen and Antibody	12	20
	9	Antigen and its characteristics		
	10	Types of antigens –hapten, epitope, TD and TI		
		antigens, adjuvants		
	11	Antibodies – basic structure and properties –		
		antigenic determinants, isotype, allotype,		
		idiotype		
	12	Types and functions of antibodies – IgM,		
	12	IgG,IgD,IgA,IgE		
	13	Monoclonal antibodies and hybridoma		
	13	· · · · · · · · · · · · · · · · · · ·		
	1.4	technology		
	14	Complement system – components and		
	1.5	activation		
	15	Pathways of complement activation – classical,		
	4.5	alternative and lectin pathway		
	16	MHC – Structure and Function – MHC 1 and		
		MHC 11 molecules.		
	17	Antigen processing and presentation – cytosolic		
		and Endocytic pathways		
IV	Imm	une response	12	20
	18	Primary and secondary immune response		
	19	Humoral - plasma cells and memory cells		

20 Cell mediated immune response- self MHC restriction, T cell activation, co-stimulatory signals, killing mechanism by CTL and NK cells

21 Immunological tolerance
22 Immunological disorders

V Open ended
1 How vaccines provide protection?
2 Survey on laboratory test results involving microbial infections.

Reference books:

- 1. Abbas, A. K., Lichtman, A. H., & Pillai, S. (2020). *Cellular and Molecular Immunology* (10th ed.). Elsevier.
- 2. Murphy, K., Weaver, C., & Mowat, A. (2017). *Janeway's Immunobiology* (9th ed.). Garland Science.
- 3. Owen, J. A., Punt, J., & Stranford, S. A. (2019). *Kuby Immunology* (8th ed.). W.H. Freeman.
- 4. Parham, P. (2014). The Immune System (4th ed.). Garland Science.
- 5. Sompayrac, L. (2019). How the Immune System Works (6th ed.). Wiley-Blackwell.
- 6. Ritchlin, C., & Firestein, G. (Eds.). (2020). *Immunology, Inflammation and Diseases of the Human Body* (3rd ed.). Elsevier.

Mapping of COs with PSOs and POs:

CO	PSO ₁	PSO ₂	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		1		3	1			2	
CO2	2	3		1			2	2	3	1	3	
CO3		2	3			1		3	2	3	2	1
CO4	1			3	2		1			2	3	2
CO5			3	2	3					3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- Endsemester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination
CO1	✓		✓
CO2		✓	
CO3	✓	✓	✓
CO4	✓	✓	✓
CO1	✓		✓

MBY6CJ 304/ MBY8MN304. FOOD AND DAIRY MICROBIOLOGY

Programme	B. Sc. Mi	crobiology					
Course Code	MBY6CJ	MBY6CJ 304/ MBY8MN304					
Course Title	Food and	Dairy Microbiology					
Type of Course	Major/Mi	nor					
Semester	VI						
Academic Level	300 - 399						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	4	3	-	2	75		
Pre-requisites	Nil						
Course Summary	storage, a food spoi and bene	rse examines the micrond safety, including the lage and preservation ficial aspects of micron dairy products.	the study of 1	nicroorganis e explores bo	ms that impact oth detrimental		

Course Outcomes (CO): .

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand the types and sources of microbial contamination in foods.	U	С	Internal Exam, End Semester Exam
CO2	Describe the microbiology of milk and dairy products and their spoilage agents.	U	C	Internal Exam, End Semester Exam
СОЗ	Analyze the principles of food spoilage and preservation.	An	С	Internal Exam, End Semester Exam
CO4	Evaluate the pathogenesis of foodborne diseases and their control measures.	E	C	Internal Exam, End Semester Exam
CO5	Apply microbiological techniques in the production and safety assessment of food products.	Ap	P	Internal Exam, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Module	Unit	Content	Hrs (45+30)	Marks (70)
I	Types	s of microorganisms in Food	10	15
	1	Source of contamination		
	2	Factors influencing microbial growth in foods		
		(extrinsic and intrinsic)		

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

	1 2	N.C. 1 1 1 1 1 1 1 1 1		1
	3	Microbial examination of food- viable colony count		
	4	Examination of fecal Streptococci		
	5	Spoilage microorganisms in various foods		
II	Dairy	10	15	
	6	Physical and chemical properties of milk		
	7	Milk as a substrate for microorganisms		
	8	Types of microorganisms in Milk: bacteria, fungi, and		
		yeast		
	9	Sources of microbial contamination of milk		
	10	Microbiological analysis of milk		
III	Food	Spoilage and Food preservation	15	25
	11	General principles underlying spoilage		
	12	Different kinds of foods, cereals and cereal products -		
		sugar and sugar products - vegetable and fruits - meat		
		and meat products - fish and other sea foods - eggs and		
		poultry		
	13	Dairy and fermentative products (ice		
		cream/milk/bread/wine)		
	14	Food preservation: Principles of food preservation		
	15	Methods of preservation. a. Physical (irradiation,		
		drying, heat processing, pasteurization, chilling and		
		freezing, high pressure and modification of		
	1.6	atmosphere)		
	16	Methods of preservation b. Chemical (Sodium		
13.7	- ID	benzoate Class I & II)	10	1.5
IV		l Poisoning	10	15
	17	Food borne infections		
	18	Bacterial: Staphylococcal, Brucella, Bacillus, Clostridium, Escherichia, Salmonella		
	19	Fungal: Mycotoxins including aflatoxins, ergotism		
	20	Viral: Hepatitis		
	21	Protozoa - Amoebiasis		
	22	Emerging food safety issues		
V	_	tical (Production of Fermented Food products)	30	
•	1	Cheese, bread, yoghurt, idli, Ice cream	30	
	2	Fermented pickles and fermented vegetables		
	3	SCP, Wine production		
•	4	Probiotics and prebiotics		1

- 1. Frazier, W. C., & Westhoff, D. C. (2013). *Food Microbiology* (4th ed.). McGraw-Hill Education.
- 2. Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). *Modern Food Microbiology* (7th ed.). Springer.

- 3. Doyle, M. P., & Buchanan, R. L. (2013). *Food Microbiology: Fundamentals and Frontiers* (4th ed.). ASM Press.
- 4. Robinson, R. K., Batt, C. A., & Patel, P. D. (2015). *Encyclopedia of Food Microbiology* (2nd ed.). Academic Press.

Mapping of COs with PSOs and POs:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3					2	3	1		3	
CO 2	3		2		1		3		2		2	
CO 3		2	3			1		3	3	2	2	1
CO 4		3		3				3		3		2
CO 5			3		3							

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

	Internal Exam	Assignment	Practical Exam	End Semester Examinations
CO 1	✓			✓
CO 2	✓			✓
CO 3	✓	✓		✓
CO 4	✓	√		✓
CO 5	✓	✓	✓	✓

MBY6CJ 305. MICROBIAL BIOTECHNOLOGY

Programme	B. Sc. Microbiology						
Course Code	MBY6CJ 305	MBY6CJ 305					
Course Title	Microbial Biotechnol	ogy					
Type of Course	Major						
Semester	VI						
Academic Level	300 - 399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	60		
Pre-requisites	Nil						
Course	This course outlines the	he scope of N	Iicrobial Bio	technology wi	th respect to		
Summary	different products and	d processes e	mploying mi	croorganisms	The course		
	discusses different bio	discusses different biotechnological approaches using microorganisms in					
	solving existing challenges as well as in novel product development to						
	address the evolving	scenario.					

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the applications of microorganisms in biotechnological processes and product development.	U	С	Internal Exam, Assignments
CO2	Explore the role of microbial biotechnology in environmental remediation and pollution control.	An	С	Internal Exam, Practical Assessments
СОЗ	Analyze the techniques and methods used in microbial enhancement for biofuel production.	Ap	С	Internal Exam, Practical Assessments
CO4	Evaluate the ethical, safety, and regulatory challenges associated with microbial biotechnology.	Е	C	Internal Exam, Assignments
CO5	Apply biotechnological innovations to develop solutions for industry-specific challenges, particularly in energy and environmental sectors.	С	P	Practical Assessments, End Semester Exam

Metacognitive Knowledge (M)

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Detailed		ous:		
Module	Unit	Content	Hrs (55+30)	Marks (70)
I	Scope	of microbial biotechnology	12	10
	1	Microbial cells as single cell proteins		
	2	Spirulina-process and safety aspects		
	3	Mushroom production: cultivation of edible and		
		medicinal mushrooms		
	4	Probiotics and prebiotics- importance, production and		
		applications		
	5	Microbial synthesis of exopolysaccharides, biopolymers,		
		bioplastics, pigments, nanoparticles and their		
		applications		
	6	Biomineralization by microorganisms and applications.		
II	Petro	leum microbiology	12	20
	7	Microbial enhanced oil recovery		
	8	oil spill degradation by microorganisms-mechanism and		
		microorganisms involved		
	9	Superbug in oil spill removal		
	10	Microbes in alternative energy- Microbial production of		
		fuels- H ₂ and ethanol		
	11	Production of biodiesel-oleogenic yeasts and algae.		
	12	Microbial bioelectrochemical systems (BESs).		
III		obial interactions with pollutants	12	20
111	13	Bioremediation- process and organisms involved,	12	
		constraints and applications.		
	14	Bioaugmentation; Ex-situ and in-situ processes		
	15	Intrinsic and engineered bioremediation		
	16	Bioremediation of dyes- microorganisms involved		
	17	Bioremediation in paper and pulp industries-		
		microorganisms involved		
	18	Microbe-metal interactions- bioaccumulation,		
		biosorption- mechanisms		
IV	Micro	bial biotechnology: applications in novel product	12	20
		opment		
	19	Genetically Modified Organisms, GMO's		
	20	Biotech products and impact assessment-Bt (cotton,		
		corn, mustard), Golden rice, herbicide resistant plants,		
	21	Insulin and therapeutics production using GMO		
	22	Bioweapons and Bioshields		
V	Pract		30	
	1	Cultivate and harvest single-cell proteins using yeast or		
		algae.		

2	Grow edible or medicinal mushrooms like Agaricus	
	bisporus or Ganoderma lucidum on suitable substrates.	
3	Ferment dairy or non-dairy substrates with probiotic strains (e.g., Lactobacillus) and test for prebiotic efficacy.	
4	Produce and isolate exopolysaccharides or bioplastics using bacterial cultures such as Xanthomonas campestris.	
5	Test the degradation of oil spills using oil-degrading	
	bacteria such as Pseudomonas aeruginosa.	
6	Extract lipids for biodiesel production.	
7	Conduct experiments on bioaccumulation and biosorption	
	of heavy metals using microorganisms like	
	Saccharomyces cerevisiae.	
8	Use microbial cultures to degrade industrial dyes and	
	assess the efficiency of degradation.	

- Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). *Brock biology of microorganisms* (16th ed.). Pearson.
- Atlas, R. M. (1997). Principles of microbiology (2nd ed.). Wm. C. Brown Publishers.
- Black, J. G., & Black, L. J. (2018). *Microbiology: Principles and explorations* (10th ed.). Wiley.
- Salle, A. J. (2007). *Fundamental principles of bacteriology* (Reprint of the 2nd ed., 6th impression 1943). Envirs Press.
- Tortora, G. J., Funke, B. R., & Case, C. L. (2019). *Microbiology: An introduction* (13th ed.). Pearson.

Mapping of COs with PSOs and POs:

CO	PSO 1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	1	2		2	
CO2	1	3	2				2	3	2	1	3	
CO3	2	1	3				1	2	3	2	2	1
CO4		2		3	1			3		3	1	2
CO5	1			2	3		1	2	1	2	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignments	Practical Assessments	End Semester Exam
CO1	✓	✓	✓	
CO2	✓		√	
CO3	✓		✓	
CO4	✓	✓		
CO5		✓	✓	✓

MBY6CJ306-PRINCIPLES OF GENETICS

Programme	B. Sc. Microbiology							
Course Code	MBY6CJ306/MBY81	MN306						
Course Title	Principles of Genetics	S						
Type of Course	Major/Minor							
Semester	VI							
Academic Level	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week per week Hours						
	4	4	-	-	60			
Pre-requisites	Nil							
Course	This course explores	the historic	al foundation	ns and basic p	orinciples of			
Summary	genetics, from Mende	el's laws to t	the chromoso	me theory of	inheritance.			
	Students delve into	mechanism	s like sex o	determination	, sex-linked			
	inheritance, and complex patterns such as epistasis and pleiotropy. It							
	covers cellular processes like mitosis and meiosis, and introduces							
	bacterial genetics, er	nphasizing i	ts role in ge	ne mapping a	and bacterial			
	evolution.							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe the historical perspectives on the study of genetics and its evolution.	R	F	Quiz, Internal Exam
CO2	Explain the basic terminology and principles of inheritance, including deviations from Mendelian concepts.	U	C	Class Tests, Internal Exam
СОЗ	Apply pedigree analysis techniques to trace patterns of inheritance within families and populations.	Ap	P	Case Study Evaluation, Internal Exam
CO4	Investigate the mechanisms of mitosis and meiosis, including their significance and regulation.	Е	C	Assignments, Internal Exam
CO5	Analyze the processes of linkage, crossing over, and recombination frequency.	An	C	Problem Solving Tests, Internal Exam
СО6	Discuss bacterial genetics, including mechanisms of conjugation, transformation, and transduction.	An	C	Assignments, Internal Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detaile Module	Unit	Content	Hrs (48+12)	Marks (70)
I	Basic	concepts in genetics	10	15
	1	Historical perspectives and basic terminology on the study of genetics.	1	
	2	Mendalian theories of inheritance: Concept of alleles,	7	
		crossing, test cross, back cross, mendalian experiments- monohybrid and dihybrid crosses. Unit factor concept,		
		law of dominance/recessiveness, law of segregation, law of independent assortment		
	3	Sex determination in genetics	1	
	4	Sex-linked inheritance	1	
II	Exter	nsions of Mendlalian genetics	10	15
	5	Incomplete dominance and codominance in genetics.	1	
	6	Multiple alleles and Lethal alleles: implications	1	
	7	Epistatsis, pleiotropy: role in gene interaction	1	
	8	Environmental effects on phenotypic expression.	1	
	9	Extra chromosomal inheritance:mitochondria/chloroplast	3	
	10	Pedigree analysis: tracing inheritance patterns.	3	
III	Cell	cycle and regulation	18	25
	11	Mitosis: process and significance.	2	
	12	Meiosis: stages and significance.	4	
	13	Cell cycle checkpoints and their importance.	3	
	14	Recombination: molecular mechanism and significance in genetic variation	3	
	15	Linkage and crossing over: cytological basis and molecular mechanisms	3	
	16	Recombination frequency as a measure of gene distance and gene order: two factor and three factor crosses	2	
	17	Interference and coincidence	1	
IV		erial Genetics	10	15
	18	Conjugation: mechanism and types	2	_
	19	Transformation: mechanism and types	2	
	20	Transduction: mechanism and types	2	
	21	Interrupted mating for gene mapping	2	
	22	Gene mapping using transformation and transduction	2	
V	Open	ended module	12	
		Population Genetics/Case studies/Surveys on Genetic inheritance		

- 1. Principles of Genetics by Gardner EJ, Simmons MJ, Snustad DP, 1991. John Wiley& Sons.
- 2. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AAM, 1987. The Benjamin/Cummings publishing company
- 3. Principles of Genetics by Gardner EJ, Simmons MJ, Snustad DP, 1991. John Wiley& Sons.
- 4. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AAM, 1987. The Benjamin/Cummings publishing company.
- 5. Genes V by Lewin B, 1994. Oxford University press.
- 6. Molecular Cell Biology by Lodish, H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J., 1995. Scientific American Books.
- 7. Biochemistry by Stryer L., 1995. W.H. Freeman and company.
- 8. Molecular Biology by Freifelder D., 1991 Narosa Publishing Home.
- 9. Principles of Gene Manipulation, 4th Ed., by R.S. Old and S.B.Primrose. 1989.Blackwell Scientific Publications, London.
- 10. Alcamo IE. (2001). DNA Technology: The Awesome Skill. 2nd edition. Elsevier Academic Press,
- 11. Brown TA. (2006). Gene Cloning and DNA Analysis. 5th edition. Blackwell Publishing, Oxford,
- 12. Glick BR and Pasternak JJ. (2003). Molecular Biotechnology. 3rd edition. ASM PressWashington D.C.
- 13. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7thedition. Blackwell Publishing, Oxford, U.K.
- 14. Sambrook J, Fritsch EF and Maniatis T. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press.

Mapping of COs with PSOs and POs:

CO	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3						3		1		2	
CO2	2						2		2		3	
CO3	3		3				3		3	3	2	
CO4		3		3				3		3		3
CO5			3						3		3	
CO6	2											

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- Endsemester Exam (70%)

СО	Internal Exam	Assignmen t	Quiz	End Semester Examination
CO1	✓		✓	√
CO2	✓			✓
CO3	✓	✓		✓
CO4	✓	√		✓
CO5	√	√		√
CO6	✓	√		√

MBY7CJ 401. BIOPHYSICS AND INSTRUMENTATION

Programme	B. Sc. Microbiology					
Course Code	MBY7CJ 401	MBY7CJ 401				
Course Title	Biophysics and Instru	mentation				
Type of Course	Major					
Semester	VII					
Academic Level	400 - 499					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	ı	2	75	
Pre-requisites	Nil					
Course	This course introduce	s students to	the principles	s of biophysics	s and various	
Summary	instrumental technic	ques used	in biologi	cal research	, including	
	microscopy, spectroscopy, chromatography, and more. It covers the					
	structural aspects of	·	-	,		
	materials, and the app	olication of the	nese techniqu	es in real-wor	d scenarios	

Course Outcomes (CO):

CO	CO Statement	Cognitiv	Knowledge	Evaluation
		e Level*	Category#	Tools used
CO1	Understand the principles and applications of biophysical techniques.	U	С	Internal Exam, End Semester Exam
CO2	Describe the theoretical basis and functionality of key biophysical instruments.	U	С	Assignments, End Semester Exam
СОЗ	Analyze the role of biophysical methods in studying molecular structure and interactions.	An	С	Assignments, End Semester Exam
CO4	Evaluate the impact of biophysical techniques on advancements in biological research.	E	С	Internal Exam, End Semester Exam
CO5	Understand the concepts of spectroscopy, chromatography, and electrophoresis as used in biophysical studies.	Ap	Р	Practical Assessment, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Metacognitive Knowledge (M)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Detailed Module	Unit	Content	Hrs (45 +30)	Marks (70)
I	Intro	duction to Structure of atoms and molecules	10	15
	1	Structure of atoms and molecules		
	2	Physico-chemical forces,. Laws of thermodynamics		
	3	DNA-Protein interactions Lambda repressor and cro		
		binding to DNA		
	4	Interactions of transcription factors-HLH, bHLH,		
		Leucine Zipper, Cys-His, Zinc fingers. Histone-DNA		
		interaction, RNA protein interactions, DNA-drug		
		Interaction		
	5	Ramachandran plot - alpha, beta, alpha - beta domains		
	6	Structural implications of peptide bond, protein families,		
		Protein-drug interaction.		
II	Micro	scopy, Spectrosopy, spectrophotometry, XRD	10	15
	7	Principle, Instrument Design, methods and Applications		
		of Microscopy: Light, Scanning and Transmission		
		electron, phase contrast, polarization, confocal and		
		interference microscopy, CCD camera, Introduction to		
		Atomic force microscopy.		
	8	Beer-Lambert's law, Principle, Instrument Design,		
		methods and Applications of UV-Visible spectra		
	9	IR spectra, Raman Spectra, Fluorescence spectra, NMR		
		and ESR spectra.		
	10	Colorimetry, spectrophotometry, Fluorimetry, Flame		
		photometry and Spectroscopy. X Ray diffraction		
		technique-principle and application.		
III	Chro	matography, Centrifugation, Electrophoresis	15	20
	11	Principle, Instrument Design, methods and Applications		
		of Chromatography, ion exchange, molecular sieve,		
		affinity chromatography, paper, TLC, GC, HPLC,		
		HPTLC, FPLC, GC-MS, LC-MS.		
	12	Centrifugation - Principle and application of various		
		types of centrifugation.		
	13	Electrophoresis- AGE, PAGE- SDS & Native PAGE,		
		Capillary Electrophoresis, isoelectric focusing, 2D		
		Electrophoresis.		
	14	Peptide mass fingerprinting using MALDI-TOF,		
		MASCOT database.		
	15	Biosensors, etc, attending workshops or trainings on		
	1	Instrumentation, etc		

IV		eter, Dialysis, Sonication, Lyophilization. connective, Cytometry and Flow cytometry, Radioactive	10	20
	isotop			
	17	pH meter- principle, types and applications.		
	18	Dialysis-principle and applications.		
	19	Principle, methods and Applications of Ultra filtration,		
	20	Sonication, Lyophilization. Refractometry,		
	21	Cytometry and Flow cytometry		
	22	Introduction to Radioactive isotopes, autoradiography,		
		radiation dosimetry- GM counter, Liquid scintillation		
		counting, safety aspects.		
\mathbf{V}	Pract	icals	30	
	23	Gel filtration chromatography		
	24	Dialysis of proteins		
	25	Paper chromatography		
	26	TLC		
	27	Column separation of plant pigments		
	28 Fractionation of egg protein and its identification			
	29 Polyacrylamide Gel Electrophoresis			
	30	Agarose gel electrophoresis		

- 1. Keith Wilson and John Walker. Practical Biochemistry- principles and techniques; Cambridge University press, London, UK. 2.
- 2. David T Plummer, Tata McGraw- Hill publishing company limited; McGrqw office, New Delhi
- 3. C.R. Kothari, 2 nd Edition,2004. Research methodology- methods and techniques. New Age International (P) limited publishers, New Delhi.
- 4. Instrumental methods of chemical analysis P.K. Sharma
- 5. Biophysical chemistry Upadhyay., Upadhyay and Nath 6. A Biologist's guide to principle and techniques of practical biochemistry Brigan L. Williams.
- 6. Handbook of Biomedical Instrumentation R.S. Khandpur, Tata McGraw Hill

Mapping of COs with PSOs and POs:

СО	PS O1	PSO	PSO	PSO4	PSO	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
	OI		3		3							
CO1	3		2		1		3		1		2	
CO2	2	3		1			2	2	3	1	3	
CO3		2	3			1		3	2	3	2	1
CO4		3		3				3		3		2
CO5	1		3		2		1		2		3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

СО	Internal Assignmen End Semester Exam t Examination		Practical Assessment	
CO1	√		✓	
CO2	✓	✓	✓	
CO3		✓	✓	
CO4	✓		✓	✓
CO5			✓	✓

MBY7CJ 402. ADVANCED IMMUNOLOGY AND CANCER BIOLOGY

Programme	B. Sc. Microbiology							
Course Code	MBY7CJ 402	MBY7CJ 402						
Course Title	Advanced Immunolo	gy and Canc	er Biology					
Type of Course	Major							
Semester	VII							
Academic Level	400-499	400-499						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3		2	75			
Pre-requisites	Nil							
Course	This course explores	advanced to	pics in immu	nology and th	ne molecular			
Summary	biology of cancer. It covers immune response mechanisms, the role of							
	immunity in cancer, genetic and molecular bases of cancer, and							
	contemporary strateg	ies for cance	r treatment ar	nd immunothe	erapy.			

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the classification and impact of various immunodeficiency disorders.	U	С	Internal Exam, End Semester Exam, Practical Assessment
CO2	Analyze the pathophysiology and management strategies for major immunodeficiency diseases.	An	С	Assignments, End Semester Exam, Practical Assessment
CO3	Explore the mechanisms and implications of immunodeficiency in HIV infection and its management.	An	С	Assignments, End Semester Exam, Practical Assessment
CO4	Evaluate the concepts and clinical applications of hypersensitivity reactions and transplantation immunology.	An	С	Internal Exam, End Semester Exam, Practical Assessment
CO5	Examine the pathogenesis, diagnosis, and therapeutic strategies in autoimmune disorders and tumor immunology.	E	С	Assignments, End Semester Exam, Practical Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

Detaile				1
Module	Unit	Content	Hrs (45+30)	Marks (70)
I	Immı	ınodeficiency Disorders	10	15
	1	Classification of immunodeficiency disorders (Primary,	1	
		Secondary, Humoral, Cell Mediated etc)		
	2	Major immunodeficiency diseases, SCID, Complement	3	
		deficiencies		
	3	Causes and management of immunodeficiency diseases	2	
	4	Animal models of immune deficiencies	2	
	5	Mechanism of immunodeficiency in HIV infection	2	
II	Hype	rsensitivity and Transplantation Immunology	10	15
	6	Introduction and Classification of Hypersensitivity	2	
	7	Mechanism, Clinical presentation, Diagnosis and	2	
		Treatment of Type I, II, and III reactions		
	8	Delayed Type Hypersensitivity: Tuberculin, Dermatitis,	4	
		Granulomatous types etc		
	9	Transplantation immunology : Classification of grafts	2	
		and transplantation. Immunology of graft rejections		
	10	MHC and Histocompatibility testing, Immunotherapy of		
		transplantation		
III	Autoi	mmune Diseases	15	25
	11	Introduction - Central tolerance, Peripheral tolerance,	2	
		Clonal deletion, Clonal anergy		
	12	Organ specific and systemic autoimmune disorders-	2	
		characteristics, clinical features and mechanism of major		
		diseases		
	13	Mechanisms of autoimmunity.	3	
	14	Diagnosis of autoimmunity: Antinuclear antibodies and	2	
		their detection		
	15	Management of autoimmune diseases	2	
IV	Immı	inology of Malignancy	10	15
	16	Tumour and immunity	2	
	17	Characteristics of tumour cells, Tumour antigens and	3	
	1,	tumor suppressor genes	3	
	18	Mechanism of tumour development	1	
	19	Immunity to tumour and immune surveillance theory	1	
	20	Immunotherapy to tumour	1	
V	Pract	1 0	30	30
•	1	Blood grouping	<i>5</i> 0	30
	2	ELISA		
	3	RPR		
	4	WIDAL		

5	RA test	
6	Western blotting	
7	Immuno Electrophoresis	
8	Immuno diffusion tests	
9	Latex Agglutination reaction	
10	Precipitin assay	

- 1. Kuby Immunology by Judy Owen, Jenni Punt, and Sharon Stranford
- 2. Janeway's Immunobiology by Kenneth Murphy, Casey Weaver, and Allan Mowat
- 3. Basic Immunology: Functions and Disorders of the Immune System by Abul K. Abbas, Andrew H. Lichtman, and Shiv Pillai
- 4. Immunology by David Male
- 5. Roitt's Essential Immunology by Peter J. Delves, Seamus J. Martin, Dennis R. Burton, and Ivan M. Roitt
- 6. Principles of Cancer Immunotherapy by Nils Lonberg
- 7. Cancer Immunotherapy Principles and Practice by Lisa H. Butterfield and Howard L. Kaufman
- 8. Ananthanarayan and Paniker's Textbook of Microbiology by Ananthanarayan, R., and Paniker, C. K. J.

Mapping of COs with PSOs and POs:

СО	PSO1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	1	2		2	
CO2	2	3	1				2	3	2	1	3	
CO3	1	2	3				1		3	2	2	1
CO4		3	2	1				3	2	3	1	2
CO5	1		2	3			1	2	3	2	3	1

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End Semester Exam (70%)

СО	Internal Exam	Assignments	End Semester Exam	Practical Assessment
CO1	✓		✓	√
CO2		✓	✓	✓
CO3		✓	√	✓
CO4	✓		✓	✓
CO5		√	√	✓

MBY7CJ 403. MICROBIAL BIOCHEMISTRY

Programme	B. Sc. Microbiology						
Course Code	MBY7CJ 403						
Course Title	Microbial Biochemist	try					
Type of Course	Major						
Semester	VII						
Academic Level	400-499						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3		2	75		
Pre-requisites	Nil						
Course Summary	The Microbial Bioche comprehensive explo- focus on microbial examination of bion hormones, and vi- classifications and me microbial metabolism hands-on experience data interpretation, re	systems. To no lecules surtamins, coretabolism. And is also ento gain pract	sential bioch the course le ch as carbol vering their detailed stud visaged. Laktical skills in	nemical prince begins with hydrates, pro- r structures, dy of enzymes poratory session	iples with a an in-depth teins, lipids, functions, s involved in tons provide analysis and		

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand the diverse roles and structures of biomolecules in microbes.	U	С	Internal Exam, End Semester Exam
CO2	Analyze metabolic pathways and their regulation in microbial systems.	An	С	Assignments, Practical Assessments
СОЗ	Evaluate the biochemical mechanisms in microbial growth and disease.	Е	P	Assignments, End Semester Exam
CO4	Discuss advanced topics in microbial enzymology and genetic control.	U	С	Internal Exam, Assignments
CO5	Apply biochemical analysis techniques in practical microbial research.	Ap	P	Practical Assessments

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Metacognitive Knowledge (M)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

<u>Detaile</u> Module	Unit	Content	Hrs (45+30)	Marks (70)
I	The I	Diversity of Cells and Biomolecules	10	15
	1	Structure and function of carbohydrates:		
		Monosaccharides, Disaccharides, and Polysaccharides		
	2	Heteropolysaccharides, Glycosaminoglycans, and		
		Glycoproteins		
	3	Structure, properties, and functions of amino acids and		
		proteins		
	4	Lipid structure, properties, classification, and functions		
	5	Fatty acid classifications: Saturated, unsaturated, PUFA,		
		short, medium, and long-chain fatty acids		
	6	Phospholipids, Sphingolipids, prostaglandins,		
		prostacyclins, and leukotrienes		
	7	Hormones and vitamins: Structure and functions		
II	Carb	ohydrate and Lipid Metabolism	15	25
	8	Overview of carbohydrate metabolism: Respiration and		
		fermentation		
	9	Glycolysis: Aerobic and anaerobic types		
	10	Pyruvate dehydrogenase complex; Krebs cycle;		
		Glyoxylate cycle		
	11	Phosphorylation: Substrate level and oxidative		
		phosphorylation		
	12	Electron transport chain and ATP formation		
	13	Gluconeogenesis, Glycogenesis, and Glycogenolysis		
	14	Fatty acid oxidation (alpha, beta, omega)		
	15	Synthesis of unsaturated and long-chain fatty acids		
III	Amin	o Acid and Nucleic Acid Metabolism	10	15
	16	Amino acid metabolism: Transamination, deamination,		
		transmethylation		
	17	Microbial metabolism of glycine, phenylalanine, and		
		lysine		
	18	Biosynthesis and degradation of purines and		
		pyrimidines		
IV	Enzy	mology and Peptidoglycan Biosynthesis	10	15
	19	Enzyme–IUB-Nomenclature, classification, active sites,		
		coenzymes, and cofactors		
	20	Factors affecting enzyme activity, kinetics (Michaelis		
		Menton equation)		
	21	Multi-subunit enzymes, isozymes, allosteric enzymes		
	22	Peptidoglycan biosynthesis		
V	Pract	1 0,	30	30

1	Preparation of Buffers	
2	Protein Estimation using Lowry's Method	
3	Estimation of Reducing Sugars by DNS Method	
4	Spectrophotometric Assay of Enzyme Activity	
5	Estimation of Glucose by ortho toluidine method	
6	Estimation of fructose by Roe – Pappadopoulos Method	
7	Qualitative identification of carbohydrates in mixtures	
	containing mono, di and polysaccharides starch,	
	dextrin, sucrose, maltose, lactose, glucose, fructose,	
	xylose and galactose.	
8	Estimation of amino acid, methionine by nitroprusside	
	method.	
9	Protein estimation by Bradford's method.	
10	Estimation of citric acid	
11	Estimation of ascorbic acid in plant matter	
12	Estimation of DNA and RNA	

- 1. Berg, J. M., Tymoczko, J. L., Gatto, G. J., & Stryer, L. (2015). *Biochemistry* (8th ed.). W. H. Freeman.
- 2. Voet, D., Voet, J. G., & Pratt, C. W. (2016). Fundamentals of Biochemistry: Life at the Molecular Level (5th ed.). Wiley.
- 3. Nelson, D. L., & Cox, M. M. (2017). *Lehninger Principles of Biochemistry* (7th ed.). W. H. Freeman.
- 4. White, D., Drummond, J., & Fuqua, C. (2020). *The Physiology and Biochemistry of Prokaryotes* (5th ed.). Oxford University Press.
- 5. Garrett, R. H., & Grisham, C. M. (2016). Biochemistry (6th ed.). Cengage Learning.

Mapping of COs with PSOs and POs:

Timpping	9 ' '				1		1					
	PS	PSO	PSO	PSO4	PSO	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
	O1	2	3		5							
CO1	3				2		3				2	
CO2	2	3					2	2	3	1	3	
CO3		2	3			1		3	2	3	2	1
CO4	1			3	2		1			2	3	2
CO5			3		3					3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

CO	Internal Exam	Assignmen t	End Semester Examination	Practical Assessment
CO1	✓		√	
CO2		√	✓	✓
CO3		√	✓	
CO4	✓	√		
CO5				✓

MBY7CJ 404. MYCOLOGY AND PARASITOLOGY

Programme	B. Sc. Microbiology	B. Sc. Microbiology						
Course Code	MBY7CJ 404							
Course Title	Mycology and Paras	Mycology and Parasitology						
Type of Course	Major							
Semester	VII	VII						
Academic Level	400-499	400-499						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours			
	4	3	-	2	75			
Pre-requisites								
Course Summary	on their general cha	This course provides an in-depth study of fungi and protozoa, focusing on their general characteristics, classification, and the diseases they cause. It also covers different fungal and protozoan diseases, their treatment, and the drugs used against them.						

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the basic features and classification of fungi and protozoa.	U	C	Internal Exam, End Semester Exam
CO2	Analyze the pathogenesis and epidemiology of fungal and protozoan diseases.	An	C	Assignments, Midterm Exam
CO3	Evaluate the mechanisms of action of antifungal and antiprotozoal agents.	Е	P	Assignments, Practical Assessments
CO4	Discuss the diagnostic techniques for fungal and protozoan infections.	U	P	Internal Exam, Practical Assessments
CO5	Apply laboratory methods for identifying and treating fungal and protozoan diseases.	Ap	P	Practical Assessments

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (45+30)	Marks (70)
	FUNC	GI	7	15
	1	Characteristic features of fungus	2	
1	2	Classification of fungus based on morphology	2	
	3	Classification of fungus based on reproduction	2	
	4	Cultivation of fungus	1	
II	Funga	al diseases	12	15
	5	Superficial infections- Piedra and Pityriasis	2	
	6	Cutaneous infections- Dermatophytosis	2	
	7	Subcutaneous infections - Mycetoma	2	
	8	Deep mycoses- Histoplasmosis	2	
	9	Oppurtunistic infections - Candidiasis	2	
	10	Antifungal agents - types	1	
	11	Mode of action of antifungal agents	1	
III	Protoz	zoa	17	25
	12	Characteristics features of protozoa	2	
	13	Classification of protozoa	2 3	
	14	Entamoeba histolytica - morphology, life cycle,	3	
		pathogenesis and epidemiology		
	15	Giardia lamblia - morphology, life cycle,	2	
		pathogenesis and epidemiology		
	16	Trypanosoma brucei - morphology, life cycle,	2	
		pathogenesis and epidemiology		
	17	Plasmodium - morphoplogy, life cycle,	4	
		pathogenesis and epidemiology		
	18	Antiprotozoal agents - types and mode of action	2	
IV	Helm	inth infections	9	15
	19	Tapeworm - Taenia solium and Taenia saginata	3	
	20	Hookworm - Ancylostoma duodenale	2	
	21	Roundworm - Ascaris lumbricoides	2	
	22	Filariasis - Wuchereria bancrofti	2	
V	Practi	cal Applications in mycology and parasitology	30	
	1	Laboratory diagnosis of fungal infections		
	2	Laboratory diagnosis of parasitic infections-stool or		
		any other sample may be used		
	3	Antifungal sensitivity tests		

- 1. Deacon, J. W. (2013). Fungal Biology (4th ed.). Wiley-Blackwell.
- 2. Roberts, L. S., Janovy, J., & Nadler, S. (2013). Foundations of Parasitology (9th ed.). McGraw-Hill Education.
- 3. Cox, F. E. G. (2010). Modern Parasitology: A Textbook of Parasitology (2nd ed.). Wiley-Blackwell.
- 4. White, D., & Fenner, F. (2014). Medical Mycology: A Practical Approach (2nd ed.). CRC Press.
- 5. Murphy, K., Weaver, C. (2016). Janeway's Immunobiology (9th ed.). Garland Science.

Mapping of COs with PSOs and POs:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2		1			3	2	1		2	
CO2	2	3				1	2	3	2	1	3	
CO3	1		3		2		1		3	2	2	1
CO4		3		3				3		3		2
CO5			3		3					3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

CO	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	✓		√	
CO2	✓	✓	✓	
CO3	✓	✓		✓
CO4	√			√
CO5	√			✓

MBY7CJ 405. ANTIMICROBIALS AND DRUG RESISTANCE

eProgramme	B. Sc. Microbiology						
Course Code	MBY7CJ 405	MBY7CJ 405					
Course Title	Antimicrobials and D	rug resistanc	ee				
Type of Course	Major						
Semester	VII						
Academic Level	400-499						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Nil						
Course	This course provides	s an in-deptl	n exploration	of antimicro	bial agents,		
Summary	their mechanisms of	action, clinic	al application	ns, and the em	ergence and		
	spread of antimicro						
	antimicrobial therap	antimicrobial therapy, mechanisms of drug resistance in bacteria,					
		strategies for combating antimicrobial resistance, and the impact of					
	antimicrobial resistan	ce on public	health.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
	T 1 'C 41 1'CC 4 1 C			Internal Exam,
CO1	To classify the different classes of	(U)	(P)	Assignment, End
	antibacterial agents	` ,	. ,	Semester
				Examination
	To understand the mechanisms of			Internal Exam,
CO2	action of antimicrobial agents and	(Ap)	(P)	Assignment, End
	their clinical applications	(7 1 p)	(1)	Semester
	then eninear applications			Examination
	To explore the molecular			Internal Exam, End
CO3	mechanisms underlying	(Ap)	(P)	Semester
	antimicrobial resistance in bacteria			Examination
	To analyze the factors			Internal Exam, End
CO4	contributing to the emergence and	(An)	(P)	Semester
	spread of antimicrobial resistance.			Examination
CO5	To perform the antimicrobial	(An)	(C)	Practical
CO3	assays	(Ap)	(C)	Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Modul e	Unit	Content	Hrs (45+30)	Marks (70)
I	Antib	acterial agents	10	15
	1	Overview of antibiotics		
	2	Principles of antimicrobial therapy: spectrum of activity,		
		pharmacokinetics, pharmacodynamics		
	3	Different classes of antibiotics- Cell wall inhibitors		
	4	Different classes of antibiotics- Membrane inhibitors		
	5	Different classes of antibiotics- Protein synthesis		
		inhibitors		
	6	Different classes of antibiotics- DNA and RNA synthesis		
		inhibitors		
II	Antiv	iral, antifungal and antiparasitic agents	10	15
	7	Different classes of antiviral agents		
	8	Different classes of antifungal agents		
	9	Different classes of antiparasitic agents		
III	Antib	piotic resistance	15	25
	11	Genetic mechanisms of antimicrobial resistance:		
		mutation, horizontal gene transfer, gene amplification		
	12	Mechanisms of drug resistance in bacteria-enzymatic		
		degradation of the drugs		
	13	Mechanisms of drug resistance in bacteria-Alteration of		
		the targets		
	14	Mechanisms of antibiotic resistance- changes in		
		membrane permeability		
	15	Mechanisms of antibiotic resistance-efflux pumps and		
		others		
IV		rs Contributing to Antimicrobial Resistance and	10	15
	strate	egies to combat		
	16	Antibiotic misuse and overuse in human and veterinary medicine		
	17	Use of antimicrobials in agriculture and animal husbandry		
	18	Nosocomial infections and healthcare-associated antimicrobial resistance		
	19	Globalization, travel, and the spread of antimicrobial-resistant pathogens		
	20	Antimicrobial stewardship programs in healthcare		
	21	Development of new antimicrobial agents and alternative		
		therapies		
	22	Education, training, and public awareness campaigns on antimicrobial resistance		
V	Pract		30	

1	CLSI guidelines for detection of antibiotic resistance	
2	Antibioic sensitivity test-Disc diffusion method	
3	MIC and MBC	

- 1. Antimicrobial Agents: Chemistry, Mode of Action, Mechanisms of Resistance and Clinical Applications" edited by Rosalind Brice
- 2. Emerging Antibiotic Resistance: Mechanisms and Strategies" by P. S. Chauhan and R. K. Sharma
- 3. Antibiotics: Actions, Origins, Resistance" by C. Walsh and A. Wencewicz
- 4. Antibiotic Policies: Fighting Resistance" by I. M. Gould and J. Van der Meer
- 5. Antimicrobial Therapy: Challenges and Innovations" by S. K. Jain and R. K. Mishra
- 6. Antibiotic Resistance Protocols" edited by S. Gillespie and L. B. Woolveridge

Mapping of COs with PSOs and POs:

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1			
CO2	2	1	3				3	2	2	1		
CO3	1	3	2				2	2	3			1
CO4		3	1	2			2	1	2	3		2
CO5			3	2	1			3	2	1		3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

Course Outcome (CO)	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	✓	✓	✓	✓
CO2	✓	✓	✓	✓
CO3	✓		✓	✓
CO4	✓		✓	✓
CO5				√

MBY8CJ 406/MBY8MN 406. BIOSTATISTICS AND BIOINFORMATICS

Programme	B. Sc. Microbiology							
Course Code	MBY8CJ 406/MBY8MN 406							
Course Title	Biostatistics and Bioinformatics							
Type of Course	Major/Minor	Major/Minor						
Semester	VIII							
Academic Level	400-499							
Course Details	Credit Lecture Tutorial Practical Total							
		per week per week per week Hours						
	4 3 - 2 6							
Pre-requisites	Nil							
Course	This course provides an in-depth exploration of Biostatistics and							
Summary	Bioinformatics, essential disciplines in modern biological research. The							
	course is designed to equip students with the necessary statistical and							
	computational tools to analyze biological data effectively.							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand fundamental biostatistical concepts and apply them to biological data analysis.	U	С	Quizzes, Internal Exam
CO2	Apply regression analysis, ANOVA, and hypothesis testing to solve complex biological questions.	Ap	Р	Assignments, Internal Exam
СОЗ	Utilize bioinformatics tools for sequence analysis and genetic data interpretation.	Ap	P	Practical Assessments, Internal Exam
CO4	Develop proficiency in using biological databases and bioinformatics software for research.	Ap	P	Practical Assessments
CO5	Analyze and construct phylogenetic trees to study molecular evolution.	An	С	End Semester Exam, Practical Assessments

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

Detaile Module		Content	Hrs (45+30)	Marks (70)	
I	Intro	duction to Biostatistics and Basic Statistical Methods	10	10	
	1	Introduction to Biostatistics - Definition and importance			
		in biological research.			
	2	Descriptive Statistics - Frequency distribution, Graphical			
		and diagrammatic representations.			
	3	Measures of Central Tendency - Mean, Median, Mode.			
	4	Measures of Dispersion - Range, Variance, Standard			
		deviation, Coefficient of variation.			
	5	Diversity Index and Data Description - Explanation and			
		calculation methods, including data visualization			
		techniques.			
	6	Statistical Inference - Populations vs. samples, Sampling			
		techniques, Standard error, Confidence intervals.			
II	Adva	nced Statistical Methods in Biological Research	10	20	
	7	Probability Distributions - Binomial distribution, Poisson			
		distribution, Normal distribution and its applications in			
		genetics.			
	8	Regression Analysis - Simple linear regression, Multiple			
		regression analysis.			
	9	Correlation and Regression Techniques - Correlation			
		analysis, advanced regression modeling.			
	10	Analysis of Variance (ANOVA) - One-way ANOVA,			
		Two-way ANOVA, principles of experimental design.			
	11	Hypothesis Testing and Goodness of Fit - Null and			
		alternative hypotheses, Type I and Type II errors, Tests of			
		significance: Normal, Chi-square, t-test, F-test, Goodness			
		of fit tests.			
III		duction to Bioinformatics and Biological Databases	15	20	
	12	Basics of Bioinformatics - Definition, history, and scope			
		of bioinformatics.			
	13	Bioinformatics Web Portals - Overview of NCBI, EBI,			
	4.4	ExPASy.			
	14	Introduction to Biological Databases - Classification of			
		databases: Primary (GenBank), Secondary (PIR),			
	1.5	Tertiary (KEGG) databases.			
	15	Sequence Databases and Data Retrieval - DNA (ENA,			
		DDBJ), Protein (Swissprot, PROSITE), using Entrez,			
	16	SRS, and DBGet.			
	16	Gene and Protein Sequence Analysis - Practical			
		techniques for analyzing sequences from nucleotide and			
		protein databases.			

 $\overline{\text{IV}}$ **Sequence Analysis and Bioinformatics Tools** 10 20 Molecular Visualization and Sequence Alignment -Molecular visualization techniques, basics of sequence alignment including match, mismatch, gaps. 18 Pairwise and Multiple Sequence Alignment - Scoring alignments, use of scoring matrices like PAM, BLOSUM. 19 Sequence Analysis Tools and Applications - Utilizing BLAST, FASTA, GCG Wisconsin/Emboss packages. 20 Phylogenetic Analysis and Molecular Evolution -Phylogenetic tree construction methods, evolutionary models and substitution matrices. Advanced Bioinformatics Applications - Homology 21 molecular docking techniques, protein modeling, structure prediction using Swiss Model, validation using What Check and Pro Check. 22 Molecular Visualization and Sequence Alignment -Molecular visualization techniques, basics of sequence alignment including match, mismatch, gaps. \mathbf{V} **30 Practical** 1. Biological Databanks- Sequence Databases, 1 Structure Databases, Specialized Databases 2. Introduction to National Center for Biotechnology Information (NCBI) 3. Data retrieval: Entrez, SRS and DBGet. 4. Analysis of gene sequence from nucleotide database. 5. Analysis of protein sequence from protein database. 6. Introduction to PDB and analysis of PDB file. 7. Molecular visualization 8. Gene structure and function prediction (using GenScan, GeneMark) 9. Sequence similarity searching using BLAST and interpretation of the results. 10. Multiple sequence alignment using Clustal and interpretation of the results. 11. Protein sequence analysis using ExPASy proteomics tools 12. Phylogenetic analysis using web tools 13. Phylogenetic analysis using PHYLIP 14. Sequence analysis using EMBOSS 15. Homology Modeling and Structure Refinement Swiss model 16. Model validation using What Check and Pro Check 17. Statistical software packages (e.g., R, SPSS)

Books and References:

- 1. Pagano, M., & Gauvreau, K. (2018). *Principles of Biostatistics* (2nd ed.). Brooks/Cole Cengage Learning.
- 2. Baldi, P., & Brunak, S. (2021). *Bioinformatics: The Machine Learning Approach* (2nd ed.). MIT Press.
- 3. Dunn, O. J., & Clark, V. (2018). *Basic Statistics: A Primer for the Biomedical Sciences* (5th ed.). Wiley.
- 4. Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). *Biological Sequence Analysis*. Cambridge University Press.
- 5. Glantz, S. A., & Slinker, B. K. (2021). *Primer of Biostatistics* (8th ed.). McGraw-Hill Education.
- 6. Pevsner, J. (2015). *Bioinformatics and Functional Genomics* (3rd ed.). Wiley-Blackwell.
- 7. Baldi, P., & Brunak, S. (2021). *Bioinformatics: The Machine Learning Approach* (2nd ed.). MIT Press.
- 8. Mount, D. W. (2021). *Bioinformatics: Sequence and Genome Analysis* (3rd ed.). Cold Spring Harbor Laboratory Press.
- 9. Aluru, S. (Ed.). (2019). *Handbook of Computational Molecular Biology*. Chapman and Hall/CRC.

СО	PSO1	PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	3			3	2	1		3	1
CO2	3	3	2				3	3	2	1		2
CO3	2	3	3				2	3	3		1	3
CO4	1	2	3	2	3		1	2	3	3	2	
CO5	2	1	2	3			2	1	2	3	3	2

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

8	Internal Exam	Assignment	Practical Assessment	End Semester Exam
CO1	√			✓
CO2	✓	✓	✓	✓
CO3	✓		✓	✓
CO4		✓	✓	✓
CO5			✓	✓

MBY8CJ 407-SOFTWARE TOOLS IN RESEARCH

	MID 1 0 C 0 + 0 / - 5 C 1 1 1	WINE TOO	LO III ILLO	DITITOTI					
Programme	B. Sc. Microbiology								
Course Code	MBY8CJ407/MBY81	MN407							
Course Title	Software tools in rese	Software tools in research							
Type of Course	Major/Minor								
Semester	VIII								
Academic Level	400 - 499								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4	-	-	60				
Pre-requisites	Nil								
Course	This course introduc	es a variety	of software	tools that are	essential in				
Summary	different stages of t	he research	process, foc	using on app	olications in				
	biological research. S	tudents will b	ecome famil	iar with data n	nanagement,				
	analysis, and present	ation tools,	as well as re	eferencing and	d plagiarism				
	detection software.								

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and utilize various academic and referencing tools to support research activities.	U	С	Internal Exam, Assignment
CO2	Apply statistical packages to analyze quantitative and qualitative research data.	Ap	Р	Internal Exam, Assignment
СОЗ	Implement tools for effective writing, formatting, and data representation in research documentation.	Ap	P	Internal Exam, Assignment, Project Evaluation
CO4	Utilize computational applications for analyzing biological data, including sequence and structural analysis.	Ap	P	Internal Exam, Assignment, Project Evaluation
CO5	Evaluate the ethical implications of using software tools in research, particularly in data presentation and publication.	Е	С	Assignment, Project Evaluation

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

vicueogintive Knowledge (WI)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detaile				
Module	Unit	Content	Hrs (48+12= 60)	Marks (70)
1	Basic	tools for research	12	15
	1	Literature search academic databases	2	
	2	Referencing tools like Sodhganga/INFLIBNET, ERIC and E-vidwan	2	
	3	Data presentation tools- MS Excel, Origin, Canva, and Adobe Illustrators	2	
	4	Open access publication and software tools to identify predatory publications	2	
	5	Software for the detection of Plagiarism.	2	
2	Refere	ence Management Software	12	15
	6	Basic features of reference Managing Software	2	
	7	Primary uses in thesis writing and journal article publication	2	
	8	Zotero as reference managing software and its application	2	
	9	Mendeley as reference managing software and its application	2	
	10	Endnote as reference managing software and its application	2	
3	Statis	tical packages for data analysis	12	20
	11	Difference between quantitative and qualitative packages	1	
	12	R and R studio	4	
	13	SPSS	3	
	14	Graphpad for conducting T-test	1	
	15	Methods of Qualitative data analysis and helpful software tools	1	20
4	Tools	for effective writing, formatting and data representation	12	
	16	Grammer checking tools (Grammarly),	1	
	17	Paraphrasing tools (Quiillbot)	1	
	18	AI tools (Chatgpt)	1	
	19	Data presentation using Microsoft Excel	2	
	20	Data presentation using Origin Software	2	
	21	Data representation using online tools like Canva and Adobe Illustrators	1	
	22	Latex/latex overleaf for data formatting	2	
5	Comp	outational Applications in Biological Research (Open-ended)	12	
	1	Introduction to biological databases (e.g., NCBI, UniProt)		
	2	Essential tools for sequence analysis (e.g., BLAST)		
	3	Genome browsers (e.g., UCSC Genome Browser), Protein structure prediction tools (e.g., SWISS-MODEL)		
	4	Structural Biology Tools-Molecular visualisation tools		

	(e.g., PyMOL, Chimera)	
5	Protein docking and molecular dynamics simulations	

References:

- 1. Muenchen, Robert A. 2011. *R for SAS and SPSS Users*. 2nd ed. 2011 edition. New York: Springer-Verlag New York Inc.
- 2. Mount, D.W. 2005. "Bioinformatics: Sequence and Genome Analysis Mount, D.W.: https://www.abebooks.com/9788123912417/Bioinformatics-Sequence-Genome-Analysis-Mount-8123912412/plp.
- 3. Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools" by Supratim Choudhuri
- 4. Online tutorials and documentation for specific tools and databases.

Mapping of COs with PSOs and POs:

	PSO	PSO	PSO	PSO	PSO	PSO	PO1	PO2	PO3	PO4	PO5	PO6
	1	2	3	4	5	6						
CO1	3	2	1				3	1				2
CO2	1	3	2				2	3	1			1
CO3	2	1	3				1	2	3	1		
CO4	2	1	3				1	2	3	1	2	
CO5			1	2	3			1	2	3	2	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
-				
O 1	√	✓		✓
CO2	√			✓
CO3	√	√	✓	✓
CO4		\	√	✓
CO5	√	√	√	

MBY8CJ 408. PHARMACEUTICAL MICROBIOLOGY

Programme	B. Sc. Microbiology								
Course Code	MBY8CJ408/MBY8MN408								
Course Title	Pharmaceutical microbiology								
Type of Course	Major/Minor	Major/Minor							
Semester	V111								
Academic Level	400-499	400-499							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4	-	-	60				
Pre-requisites	Nil								
Course	This course aims to ed	quip students	with the nec	essary knowle	edge and skill				
Summary	to address the intrica	te relationsh	ip between l	Microorganism	n and human				
	health, infectious disc	eases and pha	armaceutical	•					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyze the principles of chemotherapy including clinical and laboratory diagnostic techniques.	An	C	Internal Exam, End Semester Exam
CO2	Critically evaluate the mechanisms of antibiotic resistance and strategies for developing new therapeutics.	An	С	Assignments, Internal Exam, End Semester Exam
СОЗ	Investigate microbial contamination processes in pharmaceutical products and detail advanced contamination control strategies.	An	С	Assignments, Internal Exam, End Semester Exam
CO4	Assess the principles and technological applications in the preservation of pharmaceutical products.	E	С	Assignments, Internal Exam, End Semester Exam
CO5	Conduct and interpret antimicrobial assays to evaluate the effectiveness of growth-inhibiting substances.	Ap	С	Assignments, Internal Exam, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (48+12)	Marks (70)
I	Princ	iples of chemotherapy	drugs drug therapy usage. lopment of new therapeutics sm of antibiotic resistance pplication n to phage lytic cycle, types of herapy. ents spoilage of pharmaceutical njectible, ophthalmic control of luced by microbial e, streptodornase) , DNA vaccine, multi sub unit lets 12 al development of a product s and their properties Preservatives stability and ervative evaluation and testing. actors affecting antimicrobial ermination of MIC	10
	1	Clinical and lab diagnosis		
	2			
	3			
	4			
	5	Combined or mixed multi drug therapy		
	6			
II	Antib		12	20
	7			
	8			
	9	1 1		
	 Phage therapy: introduction to phage lytic cycle, type phages involved in phage therapy. Plant based therapeutic agents 			
	11			
III	Micro		12	20
	12	Microbial contamination and spoilage of pharmaceutical		
		products		
	13	Sterile, injectibles, non injectible, ophthalmic control of		
		pharmaceutical		
	14	pharmaceutical produced by microbial		
		fermentations(streptokinase, streptodornase)		
	15	New vaccine technologies, DNA vaccine, multi sub unit		
		vaccine		
IV	Prese	rvation of pharama products	12	20
	16	principles of preservation		
	2 Sensitivity testing 3 Choice of drug and usage 4 Route of administration of drugs 5 Combined or mixed multi drug therapy 6 Control of antibiotic/drug usage. Antibiotics resistance and development of new therapeutics 7 Development and mechanism of antibiotic resistance 8 Anti microbial peptides 9 Sources, mode of action, application 10 Phage therapy: introduction to phage lytic cycle, types of phages involved in phage therapy. 11 Plant based therapeutic agents Microbial production and spoilage of pharmaceutical products 12 Microbial contamination and spoilage of pharmaceutical products 13 Sterile, injectibles, non injectible, ophthalmic control of pharmaceutical pharmaceutical products 14 pharmaceutical produced by microbial fermentations(streptokinase, streptodornase) 15 New vaccine technologies, DNA vaccine, multi sub unit vaccine Preservation of pharama products			
	18	ideal preservative, rational development of a product		
		preservative system.		
	19	Antimicrobial preservatives and their properties		
	20	preservatives monographs. Preservatives stability and		
		efficiency. method of preservative evaluation and testing.		
<u> </u>	21	antimicrobial activity, factors affecting antimicrobial		
	<u> </u>			
	22	Assay for antibiotics –determination of MIC		
V	Open	Ended	12	

Books and References:

1. Hugo, W. B., & Russell, A. D. (2009). Pharmaceutical Microbiology (7th ed.). Wiley-Blackwell.

- 2. Denyer, S. P., Hodges, N. A., & Gorman, S. P. (Eds.). (2020). *Hugo and Russell's Pharmaceutical Microbiology* (9th ed.). Wiley-Blackwell.
- 3. Walsh, C., & Wencewicz, T. A. (2016). *Antibiotics: Challenges, Mechanisms, Opportunities*. ASM Press.
- 4. Roitt, I., Brostoff, J., & Male, D. (2017). *Immunology* (9th ed.). Elsevier Health Sciences.
- 5. Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2018). *Brock Biology of Microorganisms* (15th ed.). Pearson.
- 6. Silver, L. L. (2021). *Challenges of Antibiotic Resistance in the Development of New Therapeutics*. Academic Press.
- 7. Mims, C., Dockrell, H. M., Goering, R. V., Roitt, I., Wakelin, D., & Zuckerman, M. (2019). *Medical Microbiology* (6th ed.). Elsevier.
- 8. Bonten, M., & Weinstein, R. A. (Eds.). (2022). *Infection Control in the Pharmaceutical Industry: Preventing Contamination in Production and Non-Clinical Settings*. Springer.

СО		PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2			1	3		2		3	
CO2	2	3					2	2	3	3		
CO3		2	3		1		1	2	3	2		
CO4	1		3	2				3	2	3		
CO5			3	3				3	3		3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignment	Project Evaluation	End Semester Examination
CO1	✓			✓
CO2	✓	√		√
CO3	✓	✓		✓
CO4	✓	✓		√
CO5	✓	√		✓

MBY8CJ 489-RESEARCH METHODOLOGY IN BIOLOGICAL SCIENCE

Programme	B. Sc. Microbiology								
Course Code	MBY8CJ489								
Course Title	Research methodolog	y in biologic	al science						
Type of Course	Major								
Semester	VIII								
Academic Level	400 - 499								
Course Details	Credit Lecture Tutorial Practical Tota								
		per week	per week	per week	Hours				
	4	4	•	ı	60				
Pre-requisites	Nil								
Course	This course introduce	s students to	the essential	principles an	d techniques				
Summary	involved in conductin	g scientific r	esearch in bio	ological science	ces. It covers				
	the process of plann	ing research	, conducting	a literature	review, data				
	collection and analysis	is, thesis writ	ing, and und	erstanding res	earch ethics.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
	Understand the fundamental			Internal Exam,
CO1	principles of scientific research and	U	C	End Semester
	methodology in biological sciences.			Exam
CO2	Develop skills in literature review	An	С	Internal Exam,
CO2	and critical analysis of scientific data.	All	C	Assignments
	Apply various data collection and			Assignments,
CO3	analysis methods to enhance research	Ap	P	Practical
	quality.			Assessments
CO4	Construct and present scientific	Λ	С	Internal Exam,
004	research findings effectively.	Ap	C	Presentations
	Evaluate ethical issues in biological			Internal Exam,
CO5	research and implement best practices	E	C	End Semester
	in research conduct.			Exam
	1 (7) 77 1 1 (77) 1 1 (1		` - 4	· ~ (~)

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Metacognitive Knowledge (M)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Module		Content	Hrs	Marks
Module		Content	(45+15=60)	(70)
I	Planni	ing of research	5	15
	1	Identification of suitable methodology for research	1	
	2	Preparation of work plan	1	
	3	Writing a suitable project proposal	1	
	4	Features of good research design and its uses	1	
	5	Types of research design	1	
II	Litera	ature search	10	15
	6	Print options for literature search-News articles –	2	
		Newsletters – Magazines – Books - Journals-short		
		communication-thesis		
	7	Relevance of digital libraries in literature search	2	
	8	Critical elements in literature search on the internet	2	
	9	Resource databases on the internet in various	2	
		biological fields		
	10	Short communication / Review article search in both	2	
		print and online media		
III	Data	collection, analysis and presentations	15	25
	11	Data collection approaches	3	
	12	Work plan for observational and experimental	2	
		research		
	13	Tools for processing of data-basic and advanced	3	
	1.4	methods		
	14	Analysis of data by using statistical tools	5	
TX 7	15	Pictorial representation of data- Usefu open software	2	1.5
IV		oonents of a thesis	15	15
	16	Primary structure and components of the thesis	1	
	17	Software tools for research writings	2	
	18	Thesis draft submission and evaluation	1 2	
	19	Arrangement of Bibliography and reference managing	2	
	20	tools Dishipation of thesis for any access	2	
	20	Publication of thesis for open-access Research ethics	2	
	21 22	Plagiarism checking software	<u>l</u> 1	
V			15	
•	ended	cation/presentation of a research work (open-	13	
	1	Publication of books/book chapters		
	2	Publication of articles in journals- peer-viewed		
		journal selection based on citation indices and impact		
		factor		
	3	Manuscript preparation methods according to journal		
		policies		
	<u> </u>	poneres		1

4	Research presentation in Conferences/Seminars	
5	Research article publications in print and Online	
	media	

Books and References:

- 1. Anderson, Durston, & Poole. (1970). *Thesis and Assignment Writing*. Wiley Eastern Limited.
- 2. Booth, W. C., Colomb, G. G., Williams, J. M., Bizup, J., & Fitzgerald, W. T. (2016). *The Craft of Research* (4th ed.). University of Chicago Press.
- 3. Rajendrakumar, C. (2008). Research Methodology. APH Publishing Corporation.
- 4. Kothari, C. R. (2004). *Research Methodology: Methods and Techniques* (2nd ed.). New Age International Publishers.
- 5. Gurumani, N. (2006). Research Methodology for Biological Sciences. MJP Publishers.
- 6. Marczyk, G., DeMatteo, D., & Festinger, D. (2005). Essentials of Research Design and Methodology. John Wiley & Sons.
- 7. Katz, M. J. (2009). From Research to Manuscript: A Guide to Scientific Writing (2nd ed.). Springer.
- 8. Alley, M. (1996). The Craft of Scientific Writing (3rd ed.). Springer.
- 9. Cargill, M., & O'Connor, P. (2013). Writing Scientific Research Articles: Strategy and Steps (2nd ed.). Wiley-Blackwell.
- 10. Blake, G., & Bly, R. W. (2000). The Elements of Technical Writing. Pearson.
- 11. Reep, D. C. (2014). *Technical Writing: Principles, Strategies, and Readings* (8th ed.). Longman.

CO	PS O1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	1	2		2	
CO2	2	3	2				2	3	3		3	
CO3	1	2	3				1	3	2	3	2	1
CO4		3	2	3				3		3		2
CO5			3		3					3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	Presentations	End Semester Examination
CO1	✓			✓
CO2	✓	✓		
CO3		✓		✓
CO4	✓		✓	
CO5	✓			√

ELECTIVE COURSES

No	Course	Sem	Code	Title
1	Elective	V	MBY5EJ 301 (1)	Introduction to rDNA technology
2	Elective	V	MBY5EJ 302 (1)	Tools and Techniques in rDNA technology
3	Elective	V	MBY5EJ 303 (2)	Basic Human Physiology
4	Elective	V	MBY5EJ 304 (2)	Techniques in clinical laboratory
5	Elective	V	MBY5EJ 305 (3)	Microbes in Food and Water
6	Elective	V	MBY5EJ 306 (3)	Food quality assurance
7	Elective	V	MBY5EJ 307	Enzymology
8	Elective	VI	MBY6EJ 301 (1)	Applications of rDNA technology-1
9	Elective	VI	MBY6EJ 302 (1)	Applications of rDNA technology-II
10	Elective	VI	MBY6EJ 303 (2)	Diagnostic Microbiology
11	Elective	VI	MBY6EJ 304 (2)	Advanced Diagnostic techniques in microbiology
				Laboratory techniques for food and water
12	Elective	VI	MBY6EJ 305 (3)	analysis
13	Elective	VI	MBY6EJ 306 (3)	Food and water borne diseases
14	Elective	VI	MBY6EJ 307	Microbial Taxonomy
15	Elective	VI	MBY6EJ 308	Biosafety and Bioethics
16	Elective	VIII	MBY8EJ 401	Cell Biology
17	Elective	VIII	MBY8EJ 402	Cell and Tissue culture
18	Elective	VIII	MBY8EJ 403	Plant Pathology
19	Elective	VIII	MBY8EJ 404	Microbes in extreme environment
20	Elective	VIII	MBY8EJ 405	Virology and Emerging Microbial Diseases
21	Elective	VIII	MBY8EJ 406	Plant derived antimicrobials
22	Elective	VIII	MBY8EJ 407	Developmental biology

MBY5EJ 301(1). INTRODUCTION TO RDNA TECHNOLOGY

Programme	B. Sc. Microbiology								
Course Code	MBY5EJ 301(1)								
Course Title	Introduction to rDNA	technology							
Type of Course	Major-Elective								
Semester	V								
Academic Level	300-399								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4	-	-	60				
Pre-requisites	Nil								
Course	This course offers a	an introducto	ory explorati	on of recom	binant DNA				
Summary	technology, coverin	g the fund	damentals o	of gene clo	ning, DNA				
	manipulation, and the	he various	applications	of rDNA te	chnology in				
	modern science and r	nedicine.							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe the basic principles of genetic engineering.	U	С	Internal Exam, End Semester Exam
CO2	Explain the process of purifying DNA from living cells for cloning purposes.	U	С	Assignments, Internal Exam, End Semester Exam
СОЗ	Detail the steps involved in purifying plasmid DNA as a vector.	U	С	Assignments, Internal Exam, End Semester Exam
CO4	Outline the types of bacteriophages and the method for purifying bacteriophage DNA.	U	С	Assignments, Internal Exam, End Semester Exam
CO5	Provide insights into the isolation and preparation of RNA as a foundation for advanced genetic studies.	U	С	Assignments, Internal Exam, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (48+12)	Marks (70)
I	Intro	12	10	
	1	History of rDNA technology		
	2	Basic principles of genetic engineering.		
	3	Define Gene cloning		
	4	Define Foreign DNA, Vector, Recombinant DNA molecule		
	5	Introduction to Polymerase Chain Reaction		
	6	Cohen and Boyer Patent		
II	Isolat	ion of Total cell DNA of bacteria	12	20
	7	Define total cell DNA		
	8	Preparation of total cell DNA: Growing and harvesting of a bacterial culture		
	9	Preparation of cell extract		
	10	Purification of DNA from cell extract		
	11	Concentration of DNA samples, Measurement of DNA		
		concentration		
III	Isola	tion of Plasmid DNA	12	20
	12	Plasmids, Types of plasmids. Plasmids other than bacteria.		
	13	Preparation of plasmid DNA: Separation on the basis of size		
	14	Separation on the basis of conformation		
	15	Plasmid amplification		
	16	Applications of plasmid DNA		
IV	Isolat	ion of Bacteriophage DNA	12	20
	17	Bacteriophages: Lytic and Lysogenic phages		
	18	Lambda phage, M13 Phage		
	19	Growth of cultures to obtain high bacteriophage titre.		
	20	Preparation of non-lysogenic lambda phages		
	21	Collection of phages from an infected culture		
	22	Purification of DNA from lambda phage particles and M13 DNA		
V	Open	Ended	12	
	1	Brief idea on Isolation and Preparation of RNA		
				•

Books and References:

- 1. Brown, T. A. (2018). *Gene Cloning and DNA Analysis: An Introduction* (8th ed.). Wiley-Blackwell.
- 2. Primrose, S. B., Twyman, R. M., & Old, R. W. (2016). *Principles of Gene Manipulation and Genomics* (8th ed.). Blackwell Publishing.

- 3. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). *Molecular Biology of the Gene* (7th ed.). Pearson.
- 4. Griffiths, A. J., Wessler, S. R., Carroll, S. B., & Doebley, J. (2015). *Introduction to Genetic Analysis* (11th ed.). W. H. Freeman.
- 5. Lewin, B., Cassimeris, L., Lingappa, V. R., & Plopper, G. (2017). *Lewin's GENES XII* (12th ed.). Jones & Bartlett Learning.
- 6. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). *Molecular Biology of the Cell* (6th ed.). Garland Science.

CO	PSO 1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO 6
CO1	3		2		1		3		1		2	
CO2	2	3					2	2	3		3	
CO3		2	3		1		1	3	2	2	2	1
CO4	1			3	2		1			3	3	2
CO5			3		3					3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignment	Project Evaluation	End Semester Examination
CO1	√			√
CO2	✓	√		✓
CO3	✓	✓		√
CO4	✓	✓		✓
CO5	✓	√		✓

MBY5EJ 302 (1). TOOLS AND TECHNIQUES IN RDNA TECHNOLOGY

Programme	B. Sc. Microbiology								
Course Code	MBY5EJ 302 (1)	MBY5EJ 302 (1)							
Course Title	Tools and Techniques	s in rDNA te	chnology						
Type of Course	Major-Elective								
Semester	V								
Academic Level	300-399								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4	-	-	60				
Pre-requisites	Nil								
Course	This course attempts	to introduc	e the basic	concept of di	fferent gene				
Summary	cloning tools like	enzymes an	d different	vectors used	in genetic				
	engineering and leads to the understanding of procedures that have been								
	developed to exploit	the knowled	ge of the rep	lication and e	xpression of				
	genetic information.								

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Describe the functions and types of enzymes used in genetic engineering, such as restriction endonucleases and ligases.	U	С	Internal Exam, End Semester Exam
CO2	Explain the different vectors used in gene cloning, including plasmids and artificial chromosomes.	U	С	Internal Exam, End Semester Exam
CO3	Detail methods for introducing recombinant DNA into host cells, such as transformation and electroporation.	U	С	Internal Exam, End Semester Exam
CO4	Interpret techniques used for DNA amplification and sequencing, emphasizing PCR and its variants.	An	С	Internal Exam, End Semester Exam
CO5	Evaluate the applications and ethical considerations of rDNA technology in modern biotechnology.	Е	С	Internal Exam, End Semester Exam

Metacognitive Knowledge (M)

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Module	Unit	Content	Hrs (48+12)	Marks (70)
I	Enzyı	nes used in genetic engineering.	12	10
	1	Restriction endonucleases: Types I,II and III		
	2	DNAPolymerases,RNApolymerases,Terminal		
		deoxynucleotidyl transferase		
	3	Reverse Transcriptase, Ligases		
	4	Taq Polymerase, Topoisomerases		
	5	Methyl transferase, Kinases, Phosphatase, S1 nuclease		
	6	TOPO cloning		
II	Cloni	ng vectors	12	20
	7	Plasmids as cloning vectors. pBR322,pUC λ vectors, M13 vectors,		
	8	λ vectors, M13 vectors,		
	9	Phagemids and Phasmids.		
	10	Artificial Chromosomes YAC,PAC,BAC,HAC.		
	11	Expression vectors, Replacement vectors- Replacement vector, Shuttle vectors, Insertion vectors, Fusion vector,		
		Cosmids. Vectors for yeast and mammalian systems.		
III	Meth	ods in Gene Cloning	12	20
	12	Introduction of recombinant DNA into host cells: Transformation of DNA by Calcium chloride treatment.		
	13	Gene Delivery methods- micro injection, Electroporation,		
		Biolistics (gene gun), Agrobacterium mediated gene delivery		
	14	Selection and screening of recombinant clones: alpha complementation and blue white selection, colony and plaque hybridization, insertional inactivation.		
	15	DNA Amplification- PCR		
	16	Types of PCR		
IV		niques in Genetic Engineering	12	20
	17	DNA Libraries: Brief account of DNA libraries and its application		
	18	Blotting Techniques : Southern, Western		
	19	DNA sequencing methods.		
	20	DNA Fingerprinting- Brief account of RFLP,RAPD		
	21	Brief account of Transposons, Transposons tagging and its applications		
	22	Difference between Chromosome walking and chromosome jumping.		
V	Open	Ended	12	
	1	Visit to research institutes		
	2	Discussion on CRISPR technology		

Books and References:

- 1. Brown, T. A. (2018). *Gene Cloning and DNA Analysis: An Introduction* (7th ed.). Wiley-Blackwell.
- 2. Primrose, S. B., Twyman, R. M., & Old, R. W. (2013). *Principles of Gene Manipulation and Genomics* (8th ed.). Wiley-Blackwell.
- 3. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). *Molecular Biology of the Gene* (7th ed.). Pearson.
- 4. Griffiths, A. J. F., Wessler, S. R., Carroll, S. B., & Doebley, J. (2015). *Introduction to Genetic Analysis* (11th ed.). W. H. Freeman and Company.
- 5. Dale, J. W., & von Schantz, M. (2012). From Genes to Genomes: Concepts and Applications of DNA Technology (3rd ed.). Wiley.

Mapping of COs with PSOs and POs:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	1			3	2	1		2	
CO2	2	3					2	3	2	1	3	
CO3	1	2	3				1		3	2	2	1
CO4		3	2	3				3		3		2
CO5			3		3					3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

	Internal Exam	Assignment		End Semester
			Evaluation	Examinations
CO 1	✓			✓
CO 2	✓	✓		✓
CO 3	✓	✓		√
CO 4	✓	✓		✓
CO 5	✓	✓		✓

MBY5EJ 303(2). BASIC HUMAN PHYSIOLOGY

Programme	B. Sc. Microbiology						
Course Code	MBY5EJ 303(2)						
Course Title	Basic Human Physiol	ogy					
Type of Course	Major-Elective						
Semester	V						
Academic Level	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	-	60		
Pre-requisites	Nil						
Course	This course provides	a comprehen	sive explorat	tion of human	physiology,		
Summary	spanning cellular to	systemic le	vels. It exar	nines elemen	tary tissues,		
	various circulatory sy	various circulatory systems, general mechanisms across major systems,					
	and bio-physical concepts such as filtration and diffusion. Students gain						
	insight into physiol	ogical proc	esses crucia	1 for unders	standing the		
	functioning of the hu						

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Demonstrate an understanding of the levels of organization in the human body including cells, tissues, organs, and systems and their interrelationships.	U	C	Internal Exam, End Semester Exam
CO2	Analyze the interplay between erythropoiesis, hemostasis, and coagulation mechanisms to explain how disruptions can lead to various blood disorders.	An	С	Internal Exam, End Semester Exam
CO3	Apply understanding of blood indices to interpret laboratory results of medical conditions associated with blood transfusions and strategies to mitigate them.	Ap	С	Internal Exam, End Semester Exam
CO4	Summarize the general mechanisms involved in various systems of the human body and analyze their interrelationships.	E	С	Internal Exam, End Semester Exam
CO5	Demonstrate a comprehensive understanding of how these systems contribute to overall physiological function and homeostasis.	E	С	Internal Exam, End Semester Exam

CO6	Apply knowledge of bio-physical principles including filtration, osmosis, diffusion, and dialysis to understand physiological processes and their implications in human health and disease.	Ap	Р	Internal Exam, End Semester Exam
-----	---	----	---	-------------------------------------

Module	Unit	Content	Hrs (48+12)	Marks (60)
I	Gener	ral Physiology and Circulatory System	12	15
	1	Introduction to levels of organization in the human bodycells, tissue organs and different systems	2	
	2	Elementary tissues- epithelial tissue, connective tissue, muscle tissue, nervous tissue,	2	
	3	Circulatory system – blood and Lymph, Erythropoiesis;	2	
	4	Haemostasis, Coagulation of Blood, mechanisms	2	
	5	Blood indices- TC, DC,PCV,MCV,MCHC, Colour index, ESR- Their determination and Significance	2	
	6	Blood groups; Blood Transfusion hazards and Blood Volume;	2	
II		ral Mechanisms involved in various systems of the	12	20
		n body		
	7	Chemical composition of the body	2	
	8	Respiratory system	2	
	9	Cardiovascular system	2	
	10	Endocrine system and Exocrine system	2	
	11	Digestive system/excretory system	2	
	12	Reproductive system	2	
III		ral Mechanisms involved in various systems of the n body	12	15
	13	Integumentary system	2	
	14	Nervous system	2	
	15	Urinary system/renal system	2	
	16	Reproductive system	2	
	17	Skeletal system	2	
	18	Special senses	2	
IV	Bio-P	hysical Science	12	10
	19	Filtration, Ultra filtration, Dialysis	3	
	20	Osmosis, Diffusion, Adsorption, Absorption,	3	

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

21 Hydrotropy, Colloid, Donnan Equilibrium 3 22 3 Tracer elements, Assimilation, Surface tension. $\overline{\mathbf{V}}$ **Open Ended 30** 1 Explore interdisciplinary connections between human physiology and other fields such as nutrition, exercise science, psychology, or public health. Students can investigate how physiological processes interact with factors like diet, physical activity, mental health, or social determinants of health, and how these interactions impact overall well-being. 2 Working/Still model making events 3 Seminar/Guest lectures

Books and References:

- 1. Microbial Ecology. John Wiley & Sons, Inc., New York 2.
- 2. Introduction to Soil Microbiology by Alexander, M.(1977). John Wiley & Sons, Inc.,
- 3. Agricultural microbiology, 2nd edition. Rangaswami G., Bagyaraj D. J. Prentice hall of India.
- 4. Ronald M. Atlas., Richard Bartha. Microbial Ecology. Benjamin Cummings. 1998
- 5. Robert, L Tate (1995). Soil Microbiology. First edition, John Wiley and Sons, Inc. New York edition. Pearson Education.
- 6. Rangaswami G and Mahadevan A (2002). Disease of Crop Plants in India. Fourth edition, PHI Learning (P) Ltd., New Delhi.
- 7. Subba Rao NS (2004). Soil Microbiology. Fourth edition, Oxford and IBH Publishing Co.Pvt. Ltd., New Delhi.
- 8. Mishra RR (2004). Soil Microbiology. First edition, CBS Publishers and distributors, New Delhi.
- 9. Devlin RM. (1975). *Plant Physiology*. 3rd edition, Willard Grant Press.
- 10. Stolp H. (1988). Microbial Ecology: Organisms Habitats Activities. Cambridge University Press, Cambridge, England.
- 11. Agrios GN. (2006). Plant Pathology. 5th edition. Academic press, San Diego
- 12. Lucas JA. (1998). *Plant Pathology and Plant Pathogens*. 3rd edition. Blackwell Science, Oxford.
- 13. Mehrotra RS. (1994). Plant Pathology. Tata McGraw-Hill Limited.
- 14. Rangaswami G. (2005). *Diseases of Crop Plants in India*. 4th edition. Prentice Hall of India Pvt. Ltd., New Delhi.
- 15. Singh RS. (1998). Plant Diseases Management. 7th edition. Oxford & IBH, New Delhi.
- 16. Raina M.Maier. Ian L.Pepper and Charles P.Gerba. (2000)EnvironmentalMicrobiology.Academic press California.UK

СО	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3						3				2	
CO2	2	3					2	3	2		3	
CO3		2	3					3	3		2	1
CO4	1			3	2		1			3	3	2
CO5			3		3					3	3	3
CO6			3		3					3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- Endsemester Exam (70%)

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
			Evaluation	
CO 1	✓			✓
CO 2	✓	√		✓
CO 3	✓	✓		✓
CO 4	✓	✓		✓
CO 5	√	√		√
CO 6	√			✓

MBY5EJ 304(2). TECHNIQUES IN CLINICAL LABORATORY

Programme	B. Sc. Microbiology						
Course Code	MBY5EJ 304(2)						
Course Title	Techniques in Clinica	al Laboratory	/				
Type of Course	Major-Elective						
Semester	V						
Academic Level	300-399	300-399					
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	-	60		
Pre-requisites	Nil						
Course	This course provides a comprehensive understanding of the principles and						
Summary	techniques used in c	techniques used in clinical microbiology laboratories for the isolation,					
	identification, and ch	aracterization	n of microor	ganisms.			

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Familiarize the basic principles of clinical laboratory techniques	U	С	Internal Exam, End Semester Exam
CO2	Explain various methods used in specimen collection and processing	Ap	F	Assignments, Internal Exam, End Semester Exam
СОЗ	Detail the steps involved in conventional methods used in clinical laboratory.	U	F	Assignments, Internal Exam, End Semester Exam
CO4	Outline the various advanced and emerging techniques in clinical field	An	С	Assignments, Internal Exam, End Semester Exam
CO5	Provide insights to various molecular level methods	U	С	Assignments, Internal Exam, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (48+12)	Marks (70)
I	Intro	duction to Clinical Microbiology	12	10
	1	Overview of clinical microbiology		
	2	Scope and importance of clinical laboratory techniques.		
	3	Basic laboratory safety and hygiene		
	4	Introduction to Biosafety levels		

	5	Classification of biosafety levels		
			1.0	20
II		eimen Collection and Processing	12	20
	6	Principles of specimen collection		
	7	Processing of clinical specimens		
	8	Preservation and transportation of specimens		
	9	Blood, Sputum, Urine and fecal sample collection, transport and processing methods.		
	10	Quality assurance in specimen collection		
III		ventional Methods	12	20
111	11	Microscopic and Staining techniques.	12	20
	12	Culture techniques (aerobic, anaerobic, and		
	12	microaerophilic)		
	13	Biochemical tests for bacterial identification		
	14	Serological and immunological methods Enzyme-linked		
		immunosorbent assay (ELISA), Western blotting,		
		Immunofluorescence assays (IFA)		
	15	Molecular techniques (PCR, DNA sequencing)		
IV	Adv	12	20	
	16	Brief Account on Emerging Technologies in Clinical		
		Microbiology - MALDI-TOF mass spectrometry, Nucleic		
		acid amplification techniques (NAATs), Next-generation		
		sequencing (NGS) technologies.		
	17	Advanced Antimicrobial Susceptibility Testing (AST)		
		Methods - Principles and methods of advanced AST		
		Gradient diffusion methods (Etest, M.I.C.Evaluator)		
	18	Automated AST systems (VITEK, MicroScan, Phoenix)		
	19	Point-of-Care Testing (POCT) -Principles and applications		
		of POCT in clinical microbiology		
	20	Emerging Technologies - Digital PCR (dPCR), CRISPR-		
		based diagnostics, Nanopore sequencing		
	21	Quality Control and Assurance in Advanced Clinical		
		Microbiology		
	22	Accreditation and regulatory compliance in advanced		
		clinical laboratories		
V	Ope	n Ended	12	
	1	Molecular diagnostics for infectious diseases		
		Epidemiological typing techniques		
		Surveillance and outbreak investigation		

Books and References:

- 1. Murray, P. R., Rosenthal, K. S., & Pfaller, M. A. (Eds.). (2015). Medical Microbiology. Elsevier Health Sciences.
- 2. Forbes, B. A., Sahm, D. F., & Weissfeld, A. S. (2007). Bailey & Scott's Diagnostic Microbiology (12th ed.). Mosby.
- 3. Clinical Microbiology Procedures Handbook. (2007). ASM Press.
- 4. Isenberg, H. D. (Ed.). (2004). Clinical Microbiology Procedures Handbook (2nd ed.). ASM Press.

Mapping of COs with PSOs and POs:

CO	PSO 1	PSO2	PSO3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO 6
CO1	3		2		1		3		1		2	
CO2	2	3					2	2	3		3	
CO3		2	3		1		1	3	2	2	2	1
CO4	1			3	2		1			3	3	2
CO5			3		3					3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignment	Project Evaluation	End Semester Examination
CO1	√			✓
CO2	✓	✓		✓
CO3	✓	✓		✓
CO4	√	√		√
CO5	✓	✓		✓

MBY5EJ 305 (3)-MICROBES IN FOOD AND WATER

Programme	B. Sc. Microbiology				
Course Code	MBY5EJ 305 (3)				
Course Title	Microbes in Food and	d Water			
Type of Course	Major-Elective				
Semester	V				
Academic Level	300-399				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	Nil		•	•	·
Course	Students will gain a	comprehens	ive understar	nding of the	diversity and
Summary	roles of microbes in				
	fermentation proces	ses, food	spoilage, ar	nd foodborne	e infections.
	Additionally, the cou	rse will cove	er the microb	ial compositi	on of aquatic
	systems including w	astewater tre	eatment and	purification	of municipal
	water supplies. Empl	nasis will be	placed on me	ethods for pre	eserving food
	and ensuring water	safety, as w	vell as the p	prevention an	nd control of
	waterborne diseases.				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the diversity and roles of microbes in food and water ecosystems.	U	С	Assignments, Quizzes, Midterm Exam
CO2	Analyze the factors affecting microbial growth in food and water, and evaluate methods to control food spoilage and foodborne infections.	An	С	Assignments, Quizzes, Midterm Exam
CO3	Discuss the microbial composition of aquatic systems and evaluate methods for wastewater treatment and water purification.	U	С	Assignments, Quizzes, Midterm Exam
CO4	Examine the routes of transmission of food and waterborne pathogens and propose measures for their prevention and control.	E	С	Assignments, Quizzes, Midterm Exam
CO5	Conduct laboratory analysis of fermented and spoiled food samples and water samples from different sources, adhering to quality assurance protocols.	Ap	F	Assignments, Quizzes, Midterm Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (48+12)	Marks (70)
I	Micro	obial ecology of food and water	12	10
	1	Overview of microbes in food and water ecosystems		
	2	Growth factors of Microbes in food		
	3	Sources of microbes in food		
	4	Fermentation and spoilage		
	5	Microbes in food fermentations- Bacteria and Fungi		
	6	Microbes in food spoilage		
II	Food	spoilage and food infections	12	20
	7	Route of transmission of food borne microbes		
	8	Bacterial food spoilage		
	9	Fungal food spoilage		
	10	Microbes in food borne infections- Bacteria, Viruses and		
		protozoa		
	11	Methods for preserving food: refrigeration, freezing,		
		drying, canning, and fermentation		
III	Micro	obes in aquatic system	12	20
	12	Types of microbes in aquatic ecosystem		
	13	Microbes in waste water		
	14	Biological treatment of waste water		
	15	Purification of municipal water supply		
	16	Small scale water purification		
IV	Food	and water borne diseases	12	20
	17	Bacterial water borne diseases		
	18	Viral waterborne diseases		
	19	Protozoal waterborne diseases		
	20	Microbial Water analysis- MPN		
	21	Microbial indicators of water pollution		
	22	Eutrophication and algal blooms		
V	Open	Ended	12	
	1	Laboratory analysis of fermented and spoiled food		
		samples and water samples from different sources.		

Books and References:

- 1. Doyle, M. P. (2019). Food microbiology: Fundamentals and frontiers (5th ed.). ASM Press.
- 2. Mara, D., & Horan, N. J. (Eds.). (2003). Water microbiology: Bacterial pathogens and waterborne diseases. Elsevier.
- 3. Glibert, P. M., & Church, T. M. (2013). *Aquatic microbial ecology and biogeochemistry: A dual perspective*. Springer.
- 4. Bhunia, A. K., & Bhola, N. R. C. (2018). *Food microbiology*. McGraw-Hill Education.

- 5. Rai, R. C. (2016). Fundamentals of microbiology and immunology. Kalyani Publishers.
- 6. Baveja, C. P. (2019). Textbook of microbiology (5th ed.). Arya Publications.
- 7. Yayaver, H. S., Singh, B. K., & Singh, A. P. (2017). Microbial ecology. Springer.
- 8. Agarwal, G. P., & Agarwala, S. K. (2015). *Textbook of environmental microbiology*. Universities Press.
- 9. Erkmen, O., & Bozoglu, T. F. (Eds.). (2016). Food microbiology: Principles into practice. Wiley-Blackwell.
- 10. Percival, S. L., & Embrey, M. (Eds.). (2004). *Microbiology of waterborne diseases: Microbiological aspects and risks*. Elsevier.

CO	PSO1	PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1			
CO2	2	1		3			2	3	1			
CO3		3	2	1				2	3	1		
CO4	1		3	2			1		3	2	1	·
CO5		1	2	3				1	2	3	1	2

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignment	End Semester Examination
CO1	√	✓	✓
CO2	√	✓	✓
CO3	√	✓	√
CO4	✓	✓	✓
CO5	✓	✓	✓

MBY5EJ306 (3) FOOD QUALITY ASSURANCE

Programme	B. Sc. Microbiology					
Course Code	MBY5EJ306 (3)					
Course Title	Food Quality Assurar	nce				
Type of Course	Major-Elective					
Semester	V					
Academic Level	300-399					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	Nil					
Course	This course provides	a comprehe	ensive overv	iew of the pr	inciples and	
Summary	practices of food qu	ality assurar	ice. It cover	s the importa	nce of food	
	safety, different types of food hazards, regulatory standards, quality					
	management systems	, and the im	pact of emer	ging technolo	gies in food	
	quality assurance.					

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the fundamentals of food quality assurance and its impact on public health and consumer trust.	U	F	Internal Exam, Assignments, End Semester Exam
CO2	Identify various food hazards and implement effective mitigation strategies.	U	С	Internal Exam, Assignments, End Semester Exam
CO3	Analyze food standards and regulatory requirements to ensure compliance in the food industry.	An	F	Internal Exam, Assignments, End Semester Exam
CO4	Implement and manage quality systems in the food industry to enhance food safety and quality.	Ap	F	Internal Exam, Assignments, End Semester Exam
CO5	Evaluate the role of ISO certifications and integrate quality management principles for business success.	An	С	Internal Exam, Assignments, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed				
Module	Unit	Content	Hrs (48+12)	Marks (70)
I	Introd	uction to Food Quality Assurance:	12	15
	1	Definition and scope of food quality assurance.		
		Importance of maintaining food quality and safety		
	2			
		milestones in food quality assurance, Evolution of food safety standards globally		
	3	Fundamental principles of food quality assurance		
		(prevention, detection, control)		
	4	Objectives of ensuring food safety, quality, and		
		consistency, Relationship between food quality assurance		
		and overall business success		
II	Food F	lazardous Materials:	12	15
	5	Definition of food safety and concept of safe food.		
	6	Types of Food Hazards: Chemical hazards: Naturally		
		occurring chemical hazards (toxins and antinutritional		
		factors) in foods,		
	7	Unintentional Chemicals (Pesticides, Fertilizers,		
		Pollutants), Toxic metals (Lead, Cadmium, Mercury,		
		Aluminium and Arsenic), and Intentional Chemicals		
		(Food preservatives Food additives).		
	8	Biological hazards (pathogens, toxins), Physical hazards		
		(foreign objects, Glass, Wood, Stones, Metal Fragments,		
		Insulation Materials, Plastic and Bones).		
	9	Sources of Food Hazards: Natural sources		
		(microorganisms, toxins), Environmental sources		
		(pollution, cross-contamination)		
	10	Human-induced sources (poor hygiene, improper		
		handling). Mitigation and Control Measures for Food		
		Hazards.		
III	Food S	tandards and Regulations:	14	25
	11	Role of Food Standards in Ensuring Safety and Quality		
	12	International Food Standards Organizations (Codex		
		Alimentarius, ISO)		
	13	Indian Food Laws and Regulations: Food Safety and		
		Standards Act, 2006		
	14	Indian Food Laws and Regulations: Food Safety and		
		Standards (Licensing and Registration of Food Businesses)		
		Regulations, 2011		
	15	Roles and Responsibilities of Food Safety and Standards		
		Authority of India (FSSAI)		
	16	Role of Regulatory Authorities: Inspections, Audits, and		
		Enforcement of Food Regulations		

	17	Compliance Requirements for Food Businesses		
IV	Quality	Management Systems in Food Industry:	10	15
	18	Introduction to Quality Management Systems (QMS)		
	19	Principles of Total Quality Management (TQM) in the		
		Food Industry		
	20	Components of QMS: Policies, Procedures, and		
		Documentation Requirements		
	21	Hazard Analysis Critical Control Points (HACCP)		
		Principles and Implementation Steps		
	22	Good Manufacturing Practices (GMP) and Their		
		Importance in Ensuring Food Safety and Quality		
V	Open o	ended	12	
		Recent advancements in Food Quality Assurance		
		Technologies, Rapid detection methods for food pathogens		
		and contaminants, Smart packaging technologies for food		
		safety, and shelf-life extension. Case Study of any food		
		safety incidents and recalls.		

Books and References:

- 1. Principles of Genetics by Gardner EJ, Simmons MJ, Snustad DP, 1991. John Wiley& Sons.
- 2. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AAM, 1987. The Benjamin/Cummings publishing company
- 3. Principles of Genetics by Gardner EJ, Simmons MJ, Snustad DP, 1991. John Wiley& Sons.
- 4. Molecular Biology of the Gene by Watson, JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AAM, 1987. The Benjamin/Cummings publishing company.
- 5. Genes V by Lewin B, 1994. Oxford University press.
- 6. Molecular Cell Biology by Lodish, H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J., 1995. Scientific American Books.
- 7. Biochemistry by Stryer L.,1995. W.H. Freeman and company.
- 8. Molecular Biology by Freifelder D., 1991 Narosa Publishing Home.
- 9. Principles of Gene Manipulation, 4th Ed., by R.S. Old and S.B.Primrose. 1989.Blackwell Scientific Publications, London.
- 10. Alcamo IE. (2001). DNA Technology: The Awesome Skill. 2nd edition. Elsevier Academic Press,
- 11. Brown TA. (2006). Gene Cloning and DNA Analysis. 5th edition. Blackwell Publishing, Oxford,
- 12. Glick BR and Pasternak JJ. (2003). Molecular Biotechnology. 3rd edition. ASM PressWashington D.C.
- 13. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7thedition. Blackwell Publishing, Oxford, U.K.
- 14. Sambrook J, Fritsch EF and Maniatis T. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press.

CO	PS O1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1		2	
CO2	2	3		1			2	3	2	1	3	
CO3	1		3	2			1		3	2	2	1
CO4		1	2	3				2		3	1	2
CO5				3	2	1		1	2		3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

-	արբույ	pling of COs to Assessment Rubi les.													
		Internal Exam	Assignment		End Semester Examinations										
				Evaluation											
	CO 1	✓	✓		✓										
	CO 2	✓	✓		✓										
	CO 3	✓	✓		✓										
	CO 4	√	√		✓										
	CO 5	√	√		✓										

MBY5EJ 307. ENZYMOLOGY

Programme	B. Sc. Microbiology							
Course Code	MBY5EJ 307							
Course Title	Enzymology							
Type of Course	Major-Elective							
Semester	V							
Academic Level	300 - 399							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4		-	60			
Pre-requisites	Nil							
Course	This Elective course	covers Enzy	mology with	introduction	to enzymes,			
Summary	enzyme classification, enzyme kinetics, factors influencing enzyme							
	activity, enzyme sub	strate intera	ctions, regul	ation of enzy	me activity,			
	industrial application	of enzymes,	and advance	s in enzyme to	echnology			

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand fundamental concepts and classifications of enzymes.	U	C	Internal Exam, End Semester Exam
CO2	Analyse catalytic mechanisms and enzyme kinetics.	An	С	Internal Exam, End Semester Exam
СОЗ	Apply knowledge of enzymology to industrial processes.	Ap	F	Internal Exam, End Semester Exam
CO4	Evaluate recent advancements in enzyme technology.	Е	С	Internal Exam, End Semester Exam
CO5	Demonstrate analytical skills in solving enzymology-related problems.	Ap	F	Internal Exam, End Semester Exam
CO6	Critically discuss the role of enzymes in clinical diagnostics and therapy.	An	F	Internal Exam, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

<u>Detailed</u>			TT	36 :
Module	Unit	Content	Hrs (48+12)	Marks (70)
I	Introd	luction to enzymes and Brief history to enzymology	10	15
	1	Enzyme–IUB-Nomenclature, Classification, Enzyme		
		kinetics - Michaelis-Menten equation, Lineweaver Burk		
		plot		
	2	Catalytic power and specificity: Optical, geometrical,		
		absolute, group, bond specificities, Active site		
	3	non-protein cofactors and co-enzymes - NAD,		
		NADP+,FAD, FMN, TPP, CoA and pyridoxal		
		phosphate. Roles of cofactors and coenzymes in enzyme		
		action,		
	4	Reversible inhibition - Competitive, non competitive,		
		uncompetitive inhibition - with examples. Irreversible		
		inhibition with examples, Antibiotic inhibitors of		
		enzymes- penicillin, sulfa drugs, methotrexate etc.		
	_	Inhibitors as tools in biochemical studies,		
	5	Factors affecting enzyme activity		
II		me-substrate interactions	12	15
	6	Lock and Key hypothesis; Induced fit hypothesis,		
		Mechanism of enzyme catalysis- Acid-base catalysis,		
		Covalent catalysis, Metal ion catalysis, Electrostatic		
		catalysis		
	7	Allosteric / Regulatory enzymes: Allosteric activation and inhibition		
	8	Regulation of enzyme activity - Feed back regulation,		
		Zymogens, covalent modification, Transcriptional		
		regulation, hormone mediated regulation		
	9	Isoenzymes (LDH, Creatine kinase) and Multi-enzyme		
		complex.		
III		trial applications of enzymes	13	20
	10	Industrially important microbial enzymes		
	11	Genetically modified enzymes		
	12	Purification of enzymes - fractional precipitation,		
		dialysis, isoelectric precipitation		
	13	Purification of enzymes - chromatography - ion		
		exchange and gel filtration chromatography		
	14	HPLC, PAGE		
	15	Enzymes of clinical importance.		
IV		nces in Enzyme technology	12	20
	17	Advances in Enzyme technology		
	18	Immobilized enzymes		
	19	Abzymes		
	20	Enzyme engineering		
	21	Diagnostic Enzymology		

	22	Application-based assignments on recent advancements in enzymology.		
V	Open	Open ended		
	1	Assignments/Seminars on the above topics		
	2	2 Demonstration of immobilized enzyme preparation		
	3	Demonstration of microbial synthesis of enzymes		

Books and References:

- 1. Nelson, D. L. and Cox, M.M. Lehninger Principles of Biochemistry, 6th Edition,
- 1. W.H.Freeman and Company, N.Y., USA.
- 2. Palmer, T. Understanding Enzymes Ellis Horwood Limited, Third Edition. 1991
- 3. Palmer, T and Bonner, P. Enzymes: Biochemistry, Biotechnology, Clinical Chemistry
- 4. Publisher: Horwood Publishing Limited.
- 5. Stryer, L. Biochemistry Pub.W.H.Freeman
- 6. Voet, D. and. Voet, J. G, Biochemistry, 4th Edition, John Wiley & sons Inc. New York
- 7. Walsh, G. Protein Biochemistry and Biotechnology, John Wiley and Sons Ltd.2002.
- **8.** West E.S., W.R. Todd, H.S. Mason and J.T. Van Bruggen Text Book of Biochemistry: Oxford & IBH publishing Co-Pvt. Ltd.

Mapping of COs with PSOs and POs:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		1		3		1		2	
CO2	2	3					2	3	2		3	
CO3		2	3		1		1	3	3	2	2	1
CO4		3		3				3		3		2
CO5			3		3					3	3	
CO6	2			3						3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- End semester Exam (70%)

	Internal Exam	Assignment	Project Evaluation	End Semester Examinations
			Evaluation	
CO 1	√	\		√
CO 2	✓	✓		✓
CO 3	✓			✓
CO 4		✓		✓
CO 5	√	√		√ ·
CO 6	✓			√

MBY6EJ 301(1). APPLICATIONS OF rDNA TECHNOLOGY 1

Programme	B. Sc. Microbiology						
Course Code	MBY6EJ 301(1)	MBY6EJ 301(1)					
Course Title	Applications of rDN	A technolog	y 1				
Type of Course	Major-Elective						
Semester	VI						
Academic Level	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	4	-	-	60		
Pre-requisites	Nil						
Course	This course delves i	nto the prac	tical applica	tions of reco	mbinant DNA		
Summary	technology in various	fields includ	ing biotechno	ology, medici	ne, agriculture,		
		and environmental sciences. The focus is on the methodologies of gene					
	cloning, production of		-	and the ethic	al, safety, and		
	regulatory aspects of	biotechnolog	gy.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Design and execute gene cloning strategies for protein production.	Ap	F	Assignments, End Semester Exam
CO2	Develop recombinant proteins using eukaryotic systems and analyze their applications.	Ap	С	Assignments, End Semester Exam
СОЗ	Implement gene cloning techniques in agriculture for crop improvement.	Ap	С	Assignments, End Semester Exam
CO4	Address safety, ethical, and regulatory issues associated with GMOs.	An	C	Assignments, End Semester Exam
CO5	Evaluate the impact of genetic engineering on ecosystems and food security.	Е	C	Assignments, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Metacognitive Knowledge (M)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Modu le	Unit	Content	Hrs 48-12	Mar ks (70)
I	Gene o	cloning and DNA analysis in Biotechnology	12	20
	1	Production of protein from cloned genes in bacteria		
	2	Importance of promoter in gene expression		
	3	Examples of important promoter used for expression vector		
	4	Cassettes and gene fusion		
	5	Problems encountered with cloning in bacteria		
	6	Problems of heterologous gene expression		
II	Produ	ction of recombinant proteins in eukaryotic cells	12	20
	8	Production of recombinant proteins in eukaryotic cells - filamentous fungi		
		Production of recombinant proteins in eukaryotic cells -yeast		
	9	Using animal cells for recombinant protein production (mammalian and insect)		
	10	Pharming recombinant protein from animals		
	11	Pharming recombinant protein from plants		
	12	Ethical concerns raised by pharming		
III	Gene o	cloning and DNA analysis in Agriculture	12	20
	13	Gene manipulations in insecticide development		
	14	Manipulations to develop herbicides in plants		
	15	Gene subtraction studies - antisense RNA in plant ripening		
	16	Use of antisense RNA in polygalacturonase gene		
	17	Use of antisense RNA in inactivating ethylene synthesis		
IV	Proble	ems related to genetically modified plants	12	10
	18	Safety concerns with selectable markers		
	19	The terminator technology		
	20	The possibility of harmful effects on the environment		
	21	Public perception and legal issues related to GMOs		
	22	Future directions in genetically modified crops		
\mathbf{V}	Open	ended	12	
	1			

- 1. Brown, T. A. (2018). *Gene Cloning and DNA Analysis: An Introduction* (7th ed.). Wiley-Blackwell.
- 2. Primrose, S. B., Twyman, R. M., & Old, R. W. (2013). *Principles of Gene Manipulation and Genomics* (8th ed.). Wiley-Blackwell.
- 3. Dale, J. W., & von Schantz, M. (2015). From Genes to Genomes: Concepts and Applications of DNA Technology (3rd ed.). Wiley.
- 4. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). *Molecular Biology of the Gene* (7th ed.). Pearson.
- 5. Russell, P. J. (2014). *iGenetics: A Molecular Approach* (3rd ed.). Benjamin Cummings.
- 6. Miesfeld, R., & McEvoy, M. (2017). *Biochemistry and Molecular Biology: How Life Works* (1st ed.). W. H. Freeman.

Mapping of COs with PSOs and POs:

CO	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	1	2		2	
CO2	2	3		1			2	3	2	1	3	
CO3	1		3	2		1	1		3	2	2	1
CO4		2		3	1			3		3	1	2
CO5			2		3	1			3		3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignments	End Semester Exam
CO1	✓	✓	✓
CO2	✓	✓	✓
CO3	✓	✓	√
CO4	✓	✓	√
CO5	✓	✓	✓

MBY6EJ 302(1). APPLICATIONS OF rDNA TECHNOLOGY II

Programme	B. Sc. Microbiology						
Course Code	MBY6EJ 302(1)	MBY6EJ 302(1)					
Course Title	Applications of rDNA	A technology	· II				
Type of Course	Major-Elective						
Semester	VI						
Academic Level	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	-	60		
Pre-requisites	Nil						
Course	This course further	explores the	practical ap	plications of	recombinant		
Summary	DNA technology in	fields such	as medicir	ne, forensic s	science, and		
	archaeology, emphasizing the production of recombinant						
	pharmaceuticals, gen	ne therapy,	forensic DN	NA analysis,	and ethical		
	considerations.						

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Demonstrate comprehensive knowledge of the applications of genetic engineering in producing recombinant pharmaceuticals.	С	С	Assignments, End Semester Exams
CO2	Understand the development and application of diagnostic tools and recombinant vaccines in medical biotechnology.	U	С	Assignments, Lab Reports
СОЗ	Analyze the ethical, social, and scientific implications of gene therapy in medicine.	An	C	Midterm Exams, Assignments
CO4	Apply DNA analysis techniques to forensic challenges, enhancing skills in genetic profiling and kinship analysis.	Ap	F	Instructor- Created Exams, Quizzes
CO5	Evaluate the integration of rDNA technology in archaeological studies to trace historical human migrations and ancient diseases.	Е	С	Case Studies, Internal Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (48-12)	Marks (70)
I	Applic	cations of genetic engineering in Research	12	15
	1	To study the RNA transcript of a gene		
	2	Studying the regulation of gene expression		
	3	Identifying the control sequences by deletion analysis		
	4	Reporter genes		
	5	Identifying and studying the translation product of a cloned gene		
	6	Use of HRT and HART		
	7	Analysis of protein by invitro mutagenesis		
II		ing genomes	12	20
	8	Genome annotation in a genome sequence		
	9	Determining the function of unknown gene		
	10	Studying the transcriptome		
	11	Studying the proteome		
	12	Studying the protein protein interactions		
III		cations of genetic engineering in medicine	12	20
	13	Production of recombinant pharmaceuticals- insulin,		
	14	Synthesis of growth hormone		
	15	Diagnosis and Gene therapy for human disease		
	16	Recombinant Vaccine		
	17	Ethical issues raised by gene therapy		
IV		cloning and DNA analysis in forensic science	12	15
	18	DNA analysis in identification of crime suspects		
	19	Studying kinship by DNA profiling		
	20	Sex determination by DNA analysis		
	21	Use of DNA profiling to trace missing children		
	22	Study of prehistoric human migrations		
\mathbf{V}	Open	ended	12	
	1			

- 1. Brown, T. A. (2018). *Gene Cloning and DNA Analysis: An Introduction* (7th ed.). Wiley-Blackwell.
- 2. Primrose, S. B., Twyman, R. M., & Old, R. W. (2013). *Principles of Gene Manipulation and Genomics* (8th ed.). Wiley-Blackwell.
- 3. Dale, J. W., & von Schantz, M. (2015). From Genes to Genomes: Concepts and Applications of DNA Technology (3rd ed.). Wiley.
- 4. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). *Molecular Biology of the Gene* (7th ed.). Pearson.
- 5. Russell, P. J. (2014). *iGenetics: A Molecular Approach* (3rd ed.). Benjamin Cummings.
- 6. Miesfeld, R., & McEvoy, M. (2017). *Biochemistry and Molecular Biology: How Life Works* (1st ed.). W. H. Freeman.

Mapping of COs with PSOs and POs:

CO	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1		2		3	1	2		2	
CO2	2	3		1	3		2	3	2	1	3	
CO3	1	2	3			1	1	3	3	2	2	1
CO4		3		3				3		3		2
CO5	2		3		3			1	2	3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignments	End Semester Examinations
CO1	✓	✓	✓
CO2	✓	✓	
CO3	✓	✓	
CO4	✓		✓
CO5	✓		

MBY6EJ 303 (2). DIAGNOSTIC MICROBIOLOGY

Programme	B. Sc. Microbiology						
Course Code	MBY6EJ303 (2)						
Course Title	Diagnostic Microbiology						
Type of Course	Major-Elective						
Semester	VI						
Academic Level	300-399						
Course Details	Credit 4	week week Hour					
Pre-requisites	Nil	•	•	•	•		
Course Summary	This course provides a commicrobiology, covering fundament practical applications in healthcar importance of diagnostic microbinealth, laboratory design and bioculture systems, rapid antigen tests and phenotypic testing of microbia is placed on understanding laboratory common issues, principles in clinical practice.	tal principe settings. iology in safety cors, advance al antimicaratory techniques.	oles, advantage Students disease desideration described antibody robial susceptiniques,	will learn a iagnosis and is, automated detection eptibility. Interpreting	ques, and about the ad public ed blood methods, Emphasis g results,		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain the significance of diagnostic microbiology in healthcare and public health, emphasizing its role in disease diagnosis and management.		C	Quizzes, Midterm Exam
CO2	Identify the design and structure of diagnostic microbiology laboratories, applying principles of biosafety and biosecurity to ensure safe laboratory practices.	U	С	Quizzes, Assignments
CO3	Describe the operation and interpretation of automated blood culture systems and rapid antigen tests for microbial detection, highlighting their importance in diagnosing infectious diseases.	U	С	Assignments, Final Exam

Understand advanced antibody detection Midterm methods such **ELISA** as and CO4 U P Exam, Final immunoblotting, interpreting results Exam accurately to aid in disease diagnosis. Conduct phenotypic testing of bacterial antimicrobial susceptibility and interpret Assignments, CO₅ findings contributing to effective treatment P Ap Final Exam strategies and antimicrobial stewardship efforts.

	led Sylla		**	
Mod	Unit	Content	Hrs	Marks
ule			(48+12)	(70)
I	Introd	uction to Diagnostic Microbiology	10	15
	1	Overview of diagnostic microbiology and its		
		significance in healthcare		
	2	Role and importance of diagnostic microbiology		
		laboratories		
	3	Principles of biosafety and biosecurity in diagnostic		
		microbiology		
	4	Laboratory design considerations for diagnostic		
		microbiology facilities		
	5	Equipment and instrumentation used in diagnostic		
		microbiology laboratories		
II	Autom	ated Blood Culture	10	15
	6	Principles of blood culture and its importance in		
		diagnosing bloodstream infections		
	7	Overview of automated blood culture systems		
	8	Operation and maintenance of automated blood culture		
		instruments		
	9	Interpretation of blood culture results and identification		
		of microbial pathogens		
	10	Troubleshooting common issues in automated blood		
		culture systems		

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Ш	Rapid	Antigen Test	18	25
	11	Introduction to rapid antigen tests for microbial detection		
	12	Principles of antigen-antibody interactions in rapid		
		antigen tests		
	13	Techniques for performing rapid antigen tests		
	14	Interpretation of rapid antigen test results		
	15	Applications of rapid antigen tests in diagnostic microbiology		
	16	Limitations of rapid antigen tests in diagnostic microbiology		
IV	Advan	ced Antibody Detection and Phenotypic Testing	10	15
	17	Principles and applications of advanced antibody		
		detection methods		
	18	Techniques for performing enzyme-linked		
		immunosorbent assay (ELISA)		
	19	Immunoblotting techniques		
	20	Phenotypic testing of bacterial antimicrobial susceptibility		
	21	Introduction to biochemical profile-based microbial identification systems		
	22	Interpretation of phenotypic testing results and their clinical significance		
V	Open o	ended	12	
		Discuss the advantages and disadvantages of different diagnostic techniques		

- 1. Tille, P. (Ed.). (2017). Bailey & Scott's diagnostic microbiology (14th ed.). Elsevier.
- 2. Mahon, C. R., & Manuselis, G. (2014). *Textbook of diagnostic microbiology* (5th ed.). Saunders.
- 3. Kiser, K., Payne, W. C., & Taff, T. (2011). *Clinical laboratory microbiology: A practical approach* (1st ed.). Pearson.
- 4. Sastry, A. S., & Bhat, S. (2018). *Essentials of medical microbiology* (2nd ed.). Jaypee Brothers Medical Publishers.
- 5. Ananthanarayan, R., & Paniker, C. K. J. (2017). *A textbook of microbiology* (10th ed.). Universities Press.
- 6. Gladwin, M., & Trattler, B. (2013). *Clinical microbiology made ridiculously simple* (6th ed.). MedMaster Inc.
- 7. Chakraborty, R., & Mandal, S. C. (2015). *A concise textbook of microbiology* (1st ed.). CBS Publishers & Distributors.
- 8. Dubey, R. C. (2014). *Practical microbiology* (4th ed.). S. Chand Publishing.
- 9. Wright, W. F., & LeClair, A. C. (2020). Essentials of clinical infectious diseases (1st ed.). Springer.
- **10.** Parish, C. R. (2015). *Diagnostic microbiology: Test yourself* (1st ed.). Wiley.

Mapping of COs with PSOs and POs:

CO	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1			
CO2	2	1		3			2	3	1			
CO3		3	2	1				2	3	1		
CO4	1		3	2			1		3	2	1	
CO5		1	2	3				1	2	3	1	2

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination
CO1	✓		√
CO2	✓	✓	
CO3		✓	✓
CO4	✓		√
CO5		✓	√

MBY6EJ 304(2)-ADVANCED DIAGNOSTIC TECHNIQUES IN MICROBIOLOGY

Programme	B. Sc. Microbiology		-		•	
Course Code	MBY6EJ304(2)					
Course Title	Advanced Diagnostic	c Techniques	in Microbio	logy		
Type of Course	Major-Elective					
Semester	VI					
Academic Level	300-399					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	ı	60	
Pre-requisites	Nil					
Course	This course provides					
Summary	techniques used in di					
	microbial detection,					
	and automation in mi					
	with techniques such as real-time PCR, PFGE, ELISA, and microarray-					
	based molecular identification. Emphasis is placed on understanding the					
	principles, application					
	diagnosing infectious	diseases and	l controlling	antimicrobial	therapy.	

СО	CO Statement	Cognitiv e Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the principles and applications of probe-based microbial detection techniques in diagnostic microbiology.	U	C	Assignments, Quizzes, Midterm Exam
CO2	Explain the fundamentals of nucleic acid amplification techniques, including PCR and real-time PCR, and their applications in microbial diagnostics.	U	С	Assignments, Quizzes, Midterm Exam
CO3	Analyze and interpret data from advanced molecular techniques such as PFGE, ELISA, and microarray-based molecular identification.	An	С	Assignments, Quizzes, Midterm Exam
CO4	Evaluate the role of molecular diagnostics in detecting drug resistance and characterizing microbial pathogens.	Е	С	Assignments, Quizzes, Midterm Exam
CO5	Integrate advanced diagnostic techniques into clinical practice and public health interventions to improve patient care and disease management.	Ap	F	Assignments, Quizzes, Midterm Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Syllab Unit	Content	Hrs (48 +12)	Marks (70)
I		e-Based Microbial Detection and Nucleic Acid	10	15
	_	lification		
	1	Principles of probe-based microbial detection	1	
	2	Applications of probe-based microbial detection	7	
	3	Overview of invitro nucleic acid amplification techniques	11	
	4	Polymerase chain reaction (PCR) fundamentals		
	5	Real-time PCR principles and applications		
	6	Introduction to Pulsed-Field Gel Electrophoresis (PFGE)		
	7	Principles and applications of bDNA signal amplification		
		technique		
II		cular Techniques in Diagnostic Microbiology	10	15
	8	Introduction to agarose gel electrophoresis	1	
	9	Applications of agarose gel electrophoresis in diagnostic microbiology	1	
	10	Techniques and interpretation of Southern blot hybridization	1	
	11	Principles and applications of enzyme-linked immunoassay (ELISA)	1	
	12	Microarray-based molecular identification techniques		
	13	Interpretation of microarray-based molecular identification results		
III	Adva	nced Molecular Diagnostics	18	25
***	14	Diagnostic microbiology using real-time PCR based on FRET technology	2	25
	15	Advances in the diagnosis of Mycobacterium tuberculosis	4	
	16	Principles and applications of drug resistance detection in Mycobacterium tuberculosis	3	
	17	Molecular strain typing using repetitive sequence-based PCR (rep-PCR)	3	
	18	Automation in microbiology: principles and applications	3	
	19	Laboratory control of antimicrobial therapy: techniques and considerations		
IV	Appli	ication and Integration	10	15
	20	Case studies in probe-based microbial detection and nucleic acid amplification	2	
	21	Practical applications of molecular techniques in diagnostic microbiology	2	
	22	Integration of advanced molecular diagnostics into clinical practice and public health interventions	2	

V	Open ended		12	
	Emerging Infectious Diseases: outbreaks and their impact on globa			
	Innovations in Healthcare Technomedical devices, telemedicine, and	.		

- 1. Dicker, R., et al. (2006). *Principles of Epidemiology in Public Health Practice* (3rd ed.). CDC.
- 2. Tille, P. (Ed.). (2017). Bailey & Scott's Diagnostic Microbiology (14th ed.). Elsevier.
- 3. Mahon, C. R., & Manuselis, G. (2014). *Textbook of Diagnostic Microbiology* (5th ed.). Saunders.
- 4. Kiser, K., Payne, W. C., & Taff, T. (2011). *Clinical Laboratory Microbiology: A Practical Approach* (1st ed.). Pearson.
- 5. Sastry, A. S., & Bhat, S. (2018). *Essentials of Medical Microbiology* (2nd ed.). Jaypee Brothers Medical Publishers.
- 6. Ananthanarayan, R., & Paniker, C. K. J. (2017). *A Textbook of Microbiology* (10th ed.). Universities Press.
- 7. Gladwin, M., & Trattler, B. (2013). *Clinical Microbiology Made Ridiculously Simple* (6th ed.). MedMaster Inc.
- 8. Chakraborty, R., & Mandal, S. C. (2015). *A Concise Textbook of Microbiology* (1st ed.). CBS Publishers & Distributors.
- 9. Dubey, R. C. (2014). Practical Microbiology (4th ed.). S. Chand Publishing.
- 10. Wright, W. F., & LeClair, A. C. (2020). Essentials of Clinical Infectious Diseases (1st ed.). Springer.
- 11. Parish, C. R. (2015). Diagnostic Microbiology: Test Yourself (1st ed.). Wiley.
- 12. Somerville, M., & Kumaran, K. (2012). *Public Health and Epidemiology at a Glance*. Wiley-Blackwell.

Mapping of COs with PSOs and POs:

CO	PS O1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1			
CO2	2	1		3			2	3	1			
CO3		3	2	1				2	3	1		
CO4	1		3	2			1		3	2	1	
CO5		1	2	3				1	2	3	1	2

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination
CO1	✓	✓	√
CO2	✓	✓	√
CO3	✓	✓	√
CO4	✓	✓	√
CO5	√	√	√

$\frac{\text{MBY6EJ 305 (3). LABORATORY TECHNIQUES FOR FOOD AND WATER}}{\text{ANALYSIS}}$

Programme	B. Sc. Microbiology					
Course Code	MBY6EJ 305 (3)					
Course Title	Laboratory technique	s for food an	d water analy	ysis		
Type of Course	Major-Elective					
Semester	VI					
Academic Level	300-399					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	Nil					
Course	This course provides	a detailed s	tudy of labor	ratory techniq	ues used for	
Summary	equipment handling microscopy, culture analysis. Advanced UV-visible spectrome	This course provides a detailed study of laboratory techniques used for the analysis of food and water. It covers good laboratory practices, equipment handling, sterilization methods, staining techniques, microscopy, culture media preparation, food and water sampling, and analysis. Advanced analytical techniques such as mass spectrometry, UV-visible spectrometry, chromatography, and PCR are also discussed. The course emphasizes quality assurance and safety protocols in				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand the principles of good laboratory practices, equipment handling, and sterilization methods.	U	С	Assignments, Quizzes, Midterm Exam
CO2	Explain the techniques for staining, microscopy, and culture media preparation used in food and water analysis.	U	С	Assignments, Quizzes, Midterm Exam
СОЗ	Analyze methods for sampling, chemical, physical, and microbiological analysis of food and water.	An	С	Assignments, Quizzes, Midterm Exam
CO4	Understand and apply advanced analytical techniques such as mass spectrometry, UV-visible spectrometry, chromatography, and PCR in food and water analysis.	Ap	F	Assignments, Quizzes, Midterm Exam
CO5	Implement quality assurance and quality control measures in laboratory procedures, ensuring reliability and validity of results.	Ap	М	Assignments, Quizzes, Midterm Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (48+12)	Marks (70)
I	Intro	duction to laboratory practices	12	10
	1	Good laboratory practices		
	2	Basic laboratory equipments		
	3	Sterilization methods		
	4	Staining methods		
	5	Microscopy and types		
	6	Culture media and types		
II	Food	and water analysis	12	20
	7	Food sampling qnd preparation of samples		
	8	Basic Principles of Classical Methods of food analysis		
	9	Chemical methods of analysis		
	10	Physical methods of analysis		
	11	Microbiological methods of analysis		
III	Basic	Laboratory protocols	12	20
	12	Direct microscopic examination of food		
	13	Detection of pathogens from food and water		
	14	Enumeration of microbes by Aerobic plate count		
	15	Methods of detection of pathogens and toxins		
	16	Detection of coliforms and indicator organisms		
	17	Evaluation of microbial quality of water by MPN		
		technique and membrane filtration technique		
IV	Adva	nced Analytical techniques	12	20
	18	Instrumentation and Princple of Mass spectrometry		
	19	UV-Visible and Fluorescence Spectrometry		
	20	Liquid and Gas Chromatography		
	21	Nuclear Magnetic Resonance spectroscopy		
	22	Polymerase chain reaction		
V	Open	Ended	12	
	1	Visit food and water testing laboratories		
	2	Familiarise with standard procedures used in food and water testing laboratories		
	3	Policies on food security and food safety		

Books and References:

- 1. Nielsen, S. S. (Ed.). (2017). Food analysis (5th ed.). Springer.
- 2. Nielsen, S. S. (2010). Principles of food analysis: For filth adulteration, pesticides, and marine toxins. Springer.
- 3. Murthy, P. S. (2015). *Analytical techniques in food safety: A laboratory manual.* John Wiley & Sons.

- 4. Rao, V. R. S., & Narayanan, S. S. (2018). *Food analysis*. CBS Publishers & Distributors.
- 5. Nielsen, S. S., & Almeida, L. M. S. F. (2018). Handbook of food analysis. CRC Press.
- 6. Krishnamoorthy, G. (2016). Food safety analysis: Biosensor based approaches. Springer.
- 7. Salvi, D. N. (2014). Practical food microbiology and technology. Springer.
- 8. Qader, N., & Rajan, R. (2017). *Microbiological examination methods of food and water: A laboratory manual.* CRC Press.
- 9. Young, A. H. (2015). *Analytical chemistry in a GMP environment: A practical guide*. John Wiley & Sons.
- 10. Ananthanarayan, R., & Paniker, C. K. J. (2017). *Practical microbiology and analytical techniques*. Universities Press.

Mapping of COs with PSOs and POs:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1			
CO2	2	1		3			2	3	1			
CO3		3	2	1				2	3	1		
CO4	1		3	2			1		3	2	1	
CO5		1	2	3				1	2	3	1	2

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination
CO1	✓	✓	√
CO2	✓	√	√
CO3	✓	√	√
CO4	✓	√	√
CO5	√	√	✓

MBY6EJ306 (3)-FOOD AND WATER BORNE DISEASES

Programme	B. Sc. Microbiology	B. Sc. Microbiology					
Course Code	MBY6EJ306 (3)	MBY6EJ306 (3)					
Course Title	Food and water borne	diseases					
Type of Course	Major-Elective						
Semester	VI						
Academic Level	300-399						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	-	60		
Pre-requisites	Nil						
Course	This course provides	an overview	of the micro	bial pathogen	s and toxins		
Summary	associated with food	d and water	borne disea	ases, their ep	oidemiology,		
	transmission routes,	transmission routes, clinical manifestations, diagnosis, treatment, and					
	prevention strategies. Emphasis will be placed on understanding the						
	microbiological, epid	emiological,	and public l	nealth aspects	of food and		
	water borne diseases.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the etiology, epidemiology, and transmission routes of common food and water borne pathogens.		F	Quizzes, Assignments
CO2	Recognize the clinical manifestations, diagnostic methods, and treatment options for food and water borne diseases.	U	С	Midterm Examination
СОЗ	Evaluate the role of food safety measures, water sanitation practices, and public health interventions in preventing food and water borne illnesses.	E	F	Quizzes, Assignment, Case Study Analyses
CO4	Analyze case studies and outbreaks of food and water borne diseases to identify contributing factors and recommend control measures.	An	F	Assignment, Quizzes, Midterm Examinations
CO5	Develop effective communication skills for disseminating information on food and water safety practices to the public.		M	Assignment, Quizzes, Midterm Examinations

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	1	Hrs (48+12)	Marks (70)
I	Intro	duction to Food and Water Borne Diseases	12	10
	1	Definition, scope, and significance of food and water borne diseases		
	2	Historical perspectives and major outbreaks of food and water borne illnesses		
	3	Epidemiology of food and water borne diseases: global burden and trends		
	4	Routes of transmission: foodborne, waterborne, and fecal- oral transmission		
	5	Factors influencing the incidence and spread of food and water borne diseases		
	6	Surveillance systems and outbreak investigations of food and water borne illnesses		
II	Micro	obial Pathogens in Food and Water	12	20
	7	Bacterial pathogens: Salmonella, Escherichia coli,		
	8	Bacterial pathogens: Campylobacter, Listeria, Vibrio, etc.		
	9	Viral pathogens: Norovirus, Hepatitis A virus, Rotavirus, etc.		
	10	Parasitic pathogens: Giardia, Cryptosporidium, Entamoeba, etc.		
	11	Toxigenic pathogens: Clostridium botulinum, Staphylococcus aureus, Bacillus cereus, etc.		
III	Clinic	cal Manifestations and Diagnosis	12	20
	12	Gastrointestinal symptoms: diarrhea, vomiting, abdominal pain, etc		
	13	Extraintestinal manifestations: hepatitis, meningitis, septicemia, etc.		
	14	Laboratory methods for detecting food and water borne		
	15	pathogens: culture, serological, Laboratory methods for detecting food and water borne pathogens: molecular methods		
IV	Treat	ment, Prevention and Control Strategies	12	20
	16	Antimicrobial therapy for bacterial infections		
	17	Supportive care and fluid replacement therapy		
	18	Prevention of complications and sequelae associated with food and water borne diseases		
	19	Food safety practices: Hazard Analysis Critical Control Points (HACCP), Good Hygiene Practices (GHP), etc.		
	20	Water sanitation measures: chlorination, filtration, boiling, etc.		
	21	Public health interventions: health education, surveillance, regulation, etc.		

	22	Challenges and opportunities in food safety and water sanitation		
V	Open	12		
	1	Emerging pathogens and trends in food and water borne diseases		

- 1. Griffin, P. M., Tauxe, R. V., Kock, M. E., & Osterholm, R. M. (2021). *Food and waterborne diseases in the United States: A public health handbook*. Centers for Disease Control and Prevention.
- 2. Heymann, D. L. (Ed.). (2015). *Control of communicable diseases manual* (20th ed.). American Public Health Association.
- 3. Dolan, C. T., & Law, B. A. (2019). Foodborne diseases. Academic Press.
- 4. Riemann, H., & Bryan, M. (2018). Foodborne infections and intoxications (4th ed.). Academic Press.
- 5. Singh, R. K., & Mishra, A. (2022). *Emerging food and waterborne diseases in India*. Springer.
- 6. Tiwari, R., & Sharma, A. (2020). Food and water safety: Strategies for developing countries. Springer.
- 7. Narrod, P., & Ollinger, C. (Eds.). (2023). Foodborne illness: Latest trends, prevention strategies, and control measures. Wiley.

Mapping of COs with PSOs and POs:

CO	PSO1	PSO 2	PSO 3	PSO 4	PSO5	PSO6	PO 1	PO 2	PO 3	PO 4	PO 5	PO6
CO1	3	2	1				3	2	1			
CO2	2	3	1				2	3	1	2		
CO3	1	2	3				1	2	3	1	2	
CO4		1	2	3				1	2	3	1	2
CO5			1	2	3				1	2	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignment	End Semester Examination
CO1	✓	✓	✓

CO2	✓		✓
CO3	✓	✓	
CO4	✓	✓	
CO5	✓	✓	

MBY6EJ 307.MICROBIAL TAXONOMY

Programme	B. Sc. Microbiology							
Course Code	MBY6EJ 307							
Course Title	Microbial Taxonomy							
Type of Course	Major- Elective							
Semester	VI							
Academic Level	300 - 399							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	0	60			
Pre-requisites	Nil							
Course	This course provide	s a detailed	exploration	of microbia	l taxonomy,			
Summary	covering the classific	cation, nome	nclature, and	l identification	n of various			
		microbial species. It emphasizes understanding the historical						
	development, curre	nt methods	s, and app	olications of	microbial			
	classification systems	5.						

CO	CO Statement	Cognitiv	Knowledge	Evaluation Tools
		e Level*	Category#	used
CO1	Understand the historical and conceptual development of microbial taxonomy.	U	С	Internal Exam, End Semester Exam
CO2	Describe the criteria and techniques used for classifying microorganisms, including phenotypic and genotypic methods.	U	С	Internal Exam, End Semester Exam
CO3	Analyze the roles and implications of microbial taxonomy in scientific research and its applications in health and environment.	An	С	Internal Exam, End Semester Exam
CO4	Evaluate modern approaches in microbial taxonomy, including molecular methods and metagenomics.	E	С	Internal Exam, End Semester Exam
CO5	Critically assess the challenges and emerging trends in microbial taxonomy.	Е	С	Internal Exam, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module I	Unit	Content		N/ 0 74 7 C
I			Hrs (45+30)	Marks (70)
	Intro	duction to Microbial Taxonomy	12	10
_	1	Microbial diversity		
	2	Hierarchical organization and position of microbes in the		
-		living world.		
-	3	Haeckel's three kingdom classification		
-	4	Whittaker's five kingdom approach		
-	5	Three domain classification of Carl Woese		
	6	Historical development of microbial taxonomy		
II	Basic	s of microbial taxonomy	12	20
_	7	Concept of species and taxa and strain.		
	8	Nomenclature and classification rules.		
	9	Classification systems- Numerical taxonomy or		
		Adansonian classification		
	10	Phenetic and phylogenetic Classification.		
	11	Chemotaxonomy		
III	Ident	ification of Microorganisms	12	20
	12	Various criteria used in bacterial classification-		
		morphological, physiological characteristics		
	13	Metabolic, biochemical characteristics		
-	14	Nutritional and Ecological characteristics.		
•	15	Molecular characteristics- comparison of proteins,		
		Aminoacid sequencing		
	16	Nucleic acid base composition, Nucleic acid		
		hybridization		
-	17	Nucleic acid sequencing		
	18	Ribotyping, 16 S rRNA studies.		
IV		bial Taxonomy -Applications, recent advances and	12	20
_	challe	nges		
	19	Importance of microbial taxonomy in various scientific		
-		disciplines.		
-	20	Emerging trends in microbial taxonomy research		
	21	Challenges in classifying unculturable microorganisms		
	22	Metagenomics and its impact on microbial taxonomy		
\mathbf{V}	Open	ended	12	
	1	Bergey's Manual of Systematic Bacteriology: Brief outline- review/assignment.		
-	2	Classification systems in fungus and their different		
	_	classes- review/assignment.		
-	3	Classification of protozoa- review/assignment.		
	4	Use of bioinformatics tools for identification of		
	•	microorganisms		

- Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). *Brock biology of microorganisms* (16th ed.). Pearson.
- Atlas, R. M. (1997). Principles of microbiology (2nd ed.). Wm. C. Brown Publishers.
- Black, J. G., & Black, L. J. (2018). *Microbiology: Principles and explorations* (10th ed.). Wiley.
- Salle, A. J. (2007). *Fundamental principles of bacteriology* (Reprint of the 2nd ed., 6th impression 1943). Envirs Press.
- Tortora, G. J., Funke, B. R., & Case, C. L. (2019). *Microbiology: An introduction* (13th ed.). Pearson.

Mapping of COs with PSOs and POs:

СО	PS O1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		1		3		1		2	
CO2	2	3					2	3	2	1	3	
CO3		2	3			1		3	3	2	2	1
CO4		3		3				3		3		2
CO5			3		3					3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- Endsemester Exam (70%)

	Internal Exam	Assignment	End Semester Examinations
CO 1	✓		✓
CO 2	✓		✓
CO 3	✓	✓	✓
CO 4	✓	✓	✓
CO 5	✓	√	✓

MBY6EJ 308. BIOSAFETY AND BIOETHICS

Programme	B. Sc. Microbiology								
Course Code	MBY6EJ 308	MBY6EJ 308							
Course Title	Biosafety and Bioeth	Biosafety and Bioethics							
Type of Course	Major-Elective								
Semester	VI	VI							
Academic Level	300-399	300-399							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	4	-	-	60				
Pre-requisites	Nil								
Course	This course introduc	es students	to the ethic	al aspects of	conducting				
Summary	research and practical	ls, and the sat	fety aspects to	o be adhered t	o in labs and				
	research environment	ts, promoting	responsible	conduct in sci	ence.				

CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
Describe various biohazards and biosafety levels.	U	С	Internal Exam, End Semester Exam
Explain the role of Biosafety guidelines by the Government of India and risk analysis and assessment.	U	С	Internal Exam, End Semester Exam
Understand the concept of introducing genetically modified organisms (GMOs) and biosafety during industrial production.	U	С	Internal Exam, End Semester Exam
Discuss the principles of Bioethics and ethical implications of biotechnology.	U	С	Internal Exam, End Semester Exam
Assess the impact of ethical considerations in the development and application of biotechnological innovations.	An	С	Internal Exam, End Semester Exam
	Describe various biohazards and biosafety levels. Explain the role of Biosafety guidelines by the Government of India and risk analysis and assessment. Understand the concept of introducing genetically modified organisms (GMOs) and biosafety during industrial production. Discuss the principles of Bioethics and ethical implications of biotechnology. Assess the impact of ethical considerations in the development and application of biotechnological innovations.	Describe various biohazards and biosafety levels. Explain the role of Biosafety guidelines by the Government of India and risk analysis and assessment. Understand the concept of introducing genetically modified organisms (GMOs) and biosafety during industrial production. Discuss the principles of Bioethics and ethical implications of biotechnology. Assess the impact of ethical considerations in the development and application of biotechnological innovations.	Describe various biohazards and biosafety levels. Explain the role of Biosafety guidelines by the Government of India and risk analysis and assessment. Understand the concept of introducing genetically modified organisms (GMOs) and biosafety during industrial production. Discuss the principles of Bioethics and ethical implications of biotechnology. Assess the impact of ethical considerations in the development and application of biotechnological U C Category# C C C C C C C C C C C C C

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

Detaile Module	Unit	Content	Hrs (48+12)	Marks (70)
I	Biosa	fety	10	10
	1	Introduction to Biosafety, Definition		
	2	Objectives of safety guidelines and biosafety issues		
	3	Safety Cabinets & their types; Primary Containment for		
	4	Biohazards; Biosafety levels of specific microorganisms		
	5	Applications of different levels of Biosafety		
	6	Hazardous materials used in Biotechnology- Handling		
	0	and Disposal		
II	Rick	Assessment	10	20
11	7	Physical containment	10	20
	8	Biological containment		
	9	Assessment of risks during laboratory research		
	10	Risk assessment for biotechnology products		
	11	Biosafety Guidelines: Biosafety guidelines and regulations		
	11	(National and International); Role of Institutional biosafety		
		committee		
III	Conot	tically Modified Organisms	13	20
	12	Concept of Genetically Modified Organisms(GMOs)	13	20
	13	Egs of genetically modified organisms, plants and animals		
	14	RCGM,GEAC for GMO applications in food and		
	17	agriculture		
	15	Environmental release of GMOs; Risk analysis, Risk		
	10	assessment, Risk management and communication		
	16	Genetic manipulations and their ethical issues.		
IV	Bioet		15	20
	17	Introduction to Bioethics		
	18	Applications of Bioethics		
	19	Human Genome project and its ethical issues. Ethical, legal		
		and social implications of the human genome project.		
	20	Molecular detection of presymptomatic genetic diseases		
		and its importance in health care.		
	21	Ethical issues of Prenatal Diagnosis.		
	22	Ethical issues related to testing of Drugs on Human		
		Volunteers		
V	Open	Ended	12	
	Case s	studies- Biosafety related incidents		
		ssion on policies of bioethcs		
		trip and site visit		
		nunity engagement projects		

- 1. Bioethics: An introduction for the Biosciences by Ben Mepham
- 2. Bioethics and Biosafety by Satheesh MK.

Mapping of COs with PSOs and POs:

СО	PS O1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3			1			3		1		2	
CO2	2	3					2	3	2	1	3	
CO3	1		3				1		3	2	2	1
CO4		3		3				3		3		2
CO5			3		3					3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignment	End Semester Examinations
CO 1	√		✓
CO 2	✓	√	✓
CO 3	✓		✓
CO 4	✓	✓	✓
CO 5	√	√	√

MBY8EJ 401. CELL BIOLOGY

Programme	B. Sc. Microbiology				
Course Code	MBY8EJ 401				
Course Title	Cell Biology				
Type of Course	Major-Elective				
Semester	VIII				
Academic Level	400-499				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4		-	60
Pre-requisites	Nil				
Course	This course offers in-	depth knowle	edge about th	e function and	d structure of
Summary	cells and cellular con	nponents. It 1	provides four	ndational insig	ghts into cell
	theory, cellular proc				
	explores the implicati	ons of these	processes in	ageing and ca	ncer.

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
	Describe the structure and roles of			Internal Exam, End
CO1	various cellular organelles and	U	C	Semester Exam,
	molecules.			Assignment
	Analyze the mechanisms of cell			Internal Exam, End
CO2	signaling and communication	An	C	Semester Exam,
	pathways.			Assignment
	Evaluate the regulation			Internal Exam, End
CO3	mechanisms of the cell cycle and	E	C	Semester Exam,
	their implications in cancer.			Assignment
	Discuss the molecular basis of cell			Internal Exam, End
CO4	aging and death, including	An	C	Semester Exam,
	apoptosis and necrosis.			Assignment
	Critically assess the impact of			Internal Exam, End
CO5	cellular malfunctions on human	E	С	Semester Exam,
003	health and disease, including	Ľ	C	Assignment
	cancer.			Assignment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Metacognitive Knowledge (M)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Detaile				
Module	Unit	Content	Hrs (48 +12)	Marks (70)
I	Introd	luction to Cell Biology	10	10
	1	Historical perspective		
	2	Cell Theory.		
	3	Prokaryotes, Eukaryotes		
	4	Stem cells		
	5	Overview of techniques in cell biology		
II	Cell a	nd its constituents	12	20
	6	Plasma membrane: Structure, Functions of plasma membrane. Transport across the membrane.		
	7	Cytoskeleton, Cytoplasm, Structure and functions of Nucleus, Nucleolus, Chromosomes, Nucleosomes, Histones Centrosome		
	8	Mitochondria, Endoplasmic reticulum, Golgi apparatus, Chloroplast, Ribosomes, Peroxisomes, Lysosome, endosomes,		
III	Cell s	ignalling, Cell Division, Cell Cycle and Cancer	16	24
	9	Signal transduction pathways		
	10	Receptor-ligand interactions		
	11	Intracellular signaling		
	12	Tight junctions and gap junctions		
	13	Different stages of mitosis, Different stages of meiosis.		
	14	Cell cycle components and checkpoints, Role of cyclins and Cdks in cell cycle regulation.		
	15	Cancer - Benign and Malignant. Stages in cancer development and causes. Properties of cancerous cells.		
	16	Oncogenes, Tumour suppressor genes		
IV	Agein	g and Cell Death	10	16
		Process of Ageing, Theories of Ageing		
	18	Necrosis, Programmed Cell Death- Apoptosis.		
	19	Difference between necrosis and apoptosis		
	20	Mechanisms of apoptosis		
	21	Bax, Bid, Bcl2 proteins		
	22	Apoptosis in cancer and organ transplants.		
V		Ended	12	
		er level Problem solving sessions		
		ageing strategies: Discuss the pros and cons		
	The si	ituations around us that leads to cancer development		

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). *Molecular Biology of the Cell* (6th ed.). Garland Science.
- 2. Cooper, G. M., & Hausman, R. E. (2019). *The Cell: A Molecular Approach* (8th ed.). Sinauer Associates.
- 3. Karp, G. (2019). *Cell and Molecular Biology: Concepts and Experiments* (8th ed.). Wiley.
- 4. Pollard, T. D., Earnshaw, W. C., Lippincott-Schwartz, J., & Johnson, G. T. (2017). *Cell Biology* (3rd ed.). Elsevier.
- 5. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2016). *Molecular Cell Biology* (8th ed.). W. H. Freeman.

Mapping of COs with PSOs and POs:

СО	PSO 1	PS O2	PS O3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3			1		2	3	1		2	
CO2	3		3				3		3	2	3	1
CO3		2	3	3				2	3	3	3	2
CO4	1			3	2		1			3	3	2
CO5			3		3					3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- Endsemester Exam (70%)

	Internal Exam	Assignment	Project	End Semester Examinations
			Evaluation	
CO1	✓			✓
CO2	✓	√		✓
CO3	✓	√		✓
CO4	✓	√		✓
CO5	√	√		√

MBY8EJ 402-CELL AND TISSUE CULTURE

	NIBIOES 102 CEI					
Programme	B. Sc. Microbiology					
Course Code	MBY8EJ 402					
Course Title	Cell and Tissue Cultu	ire				
Type of Course	Major-Elective					
Semester	VIII					
Academic Level	400 - 499					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4		-	60	
Pre-requisites	Nil					
Course	This Elective course	covers the fi	undamental a	spects of Cel	l and Tissue	
Summary	Culture, culture medi	a component	s, types of pla	int and animal	cell culture,	
	applications of plant and animal cell culture technique, transgenic plants					
	and animals. It prov	and animals. It provides students with theoretical knowledge and helps				
	them to identify the a	pplications o	f cell culture	techniques.	_	

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand basic techniques and requirements of tissue culture.	U	С	Internal Exam, Assignments
CO2	Apply techniques to plant and animal cells.	Ap	F	Internal Exam
СОЗ	Analyze outcomes from culture techniques.	An	С	Internal Exam, Assignments
CO4	Assess the ethical and safety considerations in tissue culture.	Е	С	Assignments, End-Sem Exam
CO5	Create experimental protocols for applications.	С	F	Assignments, Projects

Metacognitive Knowledge (M)

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Detailed			T	T
Module	Unit	Content	Hrs (45+30)	Marks (70)
I	Introd	luction to Plant and Animal tissue culture	10	15
	1	Introduction to Plant and Animal tissue culture		
	2	Basic laboratory requirements for tissue culture		
	3	Maintenance of sterile conditions		
	4	Testing the viability of cells and dye exclusion methods		
	5	Types of media used and its formulations.		
II	Anim	al cell culture	10	15
	6	Animal cell culture media and its type		
	7	primary culture, cell lines and types- finite cell lines, continuous cell lines,		
	8	monolayer and suspension cultures, organ culture.		
	9	Maintenance of cell lines-Contamination of cell lines,		
		replacement of Medium and Subculture		
III	Plant	cell tissue culture	15	25
	10	Plant cell tissue culture Media components,		
	11	Role of hormones in Plant tissue culture media		
	12	Plant hormones: Auxins, cytokinins, Gibberellins,		
		Abscisic Acid, ethylene.		
	13	Plant tissue culture techniques- explant culture, callus		
		culture		
	14	Cell or suspension culture- filter paper raft nurse tissue		
		technique, micro chamber technique		
	15	Protoplast culture and somatic hybridization		
IV	Appli	cations of Plant and Animal tissue culture	10	15
	17	Applications of animal tissue culture - Animal cell culture		
		as a substitute for animal experiments,		
	18	Stem cell culture and its applications		
	19	Brief account on Transgenic Plants and Animals		
	20	Applications of plant tissue culture - Somatic		
		embryogenesis, Crop improvement, Clonal propagation,		
		Production of pathogen free plants, Production of		
		seedless plants, synthetic seeds,		
	21	Production of secondary metabolites from plant cell		
		suspension culture		
	22	Brief account on transgenic plants- Herbicide resistant		
		plants, insect-resistant plants.		
V	Open	ended	30	
	1	Assignments/Seminars on the above topics, Cell Bank,		
		Cryopreservation, Cloning		
İ	2	Industrial visit to Agricultural Nurseries having plant		

	tissue culture facility	
3	Lab Visit to animal cell culture facilities, demonstration	
	sessions on cell viability assays in lab, etc	

- 1. Freshney, R. I. (2005). *Culture of animal cells: A manual of basic technique and specialized applications* (6th ed.). Wiley-Liss.
- 2. Vidyasekaran, P. (2010). Genetic engineering, molecular biology, and tissue culture for crop pest and disease management. Paya Publishing.
- 3. Ho, C. S., & Wang, D. I. C. (1995). Animal cell reactors. Butterworth-Heinemann.
- 4. Grierson, D., & Covey, S. N. (1988). *Plant molecular biology* (2nd ed.). Chapman and Hall.
- 5. Glick, B. R., & Pasternak, J. J. (2003). *Molecular biotechnology: Principles and applications of recombinant DNA* (3rd ed.). ASM Press.

Mapping of COs with PSOs and POs:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3						2		1			
CO2	2	3					1	2				
CO3	1	2	3					1	2			
CO4		1	2	3					1	2	3	
CO5			1	2	3					1	2	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignments	End Semester Exam
CO1	✓	✓	✓
CO2	✓		√
CO3	✓	✓	✓
CO4	✓	✓	✓
CO5	✓	✓	

MBY8EJ 403. PLANT PATHOLOGY

Programme	B. Sc. N	B. Sc. Microbiology						
Course Code	MBY8E	MBY8EJ 403						
Course Title	Plant Pa	athology						
Type of Course	Major-E	Elective						
Semester	VIII							
Academic	400 - 49	9.						
Level								
Course Details	Credit	Lecture per week	Tutorial	Practical	Total Hours			
			per week	per week				
	4	4	_	-	60			
Pre-requisites	Nil							
Course	This co	ourse explores the	essentials of	plant pathology	including the			
Summary		isms of disease deve						
		methods. It emphasizes bacterial, fungal, viral, and nematode diseases of						
		covering pathogen	identification	i, disease cycle	e, and modern			
	manage	ment strategies.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define plant diseases and understand the disease cycle and pathogenicity.	U	C	Quizzes, Midterm Exam
CO2	Classify plant diseases and recognize different types of plant pathogens.	R	F	Assignments, End Semester Examinations
СОЗ	Explain the processes involved in plant disease development including infection and dissemination.	U	С	Instructor-created exams, Quizzes
CO4	Evaluate plant defense mechanisms including induced systemic resistance (ISR) and systemic acquired resistance (SAR).	E	F	Project Evaluation, End Semester Examinations
CO5	Implement strategies for the chemical and biological control of plant diseases.	Ap	F	Practical Assessments, Lab Reports
CO6	Conduct surveys of plant diseases and apply control measures, identifying diseases by their symptoms and causative organisms.	U	F	Quizzes, Final Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module Module		Content	Hrs (48+12)	Marks (70)
I	Conc	cepts of plant diseases	10	15
	1	Definition of Disease		
	2	Disease cycle and its pathogenicity. Signs and		
		Symptoms associated with Microbial plant diseases		
	3	Classification of plant diseases		
	4	Types of plant pathogens		
	5	Contributions in the field of plant pathology		
II	Plant	Disease development	12	15
	6	Infection, Invasion, colonization, Dissemination of pathogens		
	7	Concepts of monocyclic, polycyclic and polyetic diseases		
	8	Disease triangle and Disease pyramid		
	9	Plant defense mechanisms - Physical, Biochemical, ISR and SAR.		
III	Plan	t Diseases	14	25
	10	Bacterial diseases - Angular leaf spot of cotton, Leaf blight of rice		
	11	Bacterial disease- Crown Gall, Citrus Canker		
	12	Fungal disease- Red rot of sugarcane - <i>Colletotrichum</i>		
	12	falcatum, Wilt of tomato -Fusarium oxysporum		
	13	Fungal disease- Early blight of potato -Alternaria solani, Wilt of cotton		
	14	Viral diseases- Papaya ring spot, Tomato Yellow Leaf Curl,		
	15	Viral diseases- Banana Bunchy top, Tobacco Mosaic		
	16	Nematode Diseases: Root-Knot Nematode and Cyst Nematode		
IV	Plant	disease management/ Control strategies	12	15
-,	17	Chemical means of Disease control - fungicides, virucides		
	18	Chemical means of Disease control - antibiotics,		
		nematicides		
	19	Biological control of plant diseases - Definition, scope		
		and importance		
	20	Biological control of plant diseases-Biopesticides,		
	21	Biological control of plant diseases-Beneficial insects, and PGPR		
	22	Biological control of plant diseases- Endophytes		
V	Open	ended	12	
	1	Survey of plant diseases around the campus		

2	Application of chemical/biological control measures	
	by student groups	
3	Visit to agricultural fields/ agricultural research	
	stations.	
4	Identify the diseases mentioned in the syllabus with	
	respect to causative organisms and symptoms	
5	Submit herbarium preparations of any three of the	
	diseases mentioned.	

- 1. Campbell, R. (1987). Plant Microbiology. ELBS Edward Arnold, London.
- 2. Gupta, V. K., & Paul, T. S. (2004). Fungi & Plant Diseases. Kalyani Publishers, New Delhi.
- 3. Hale, M. E. (1983). The Biology of Lichen (III Edn.). Edward Arnold, London.
- 4. Deacon, J. (2007). Fungal Biology (IV Edn.). Blackwell Publishing, Ane Books Pvt. Ltd.
- 5. Agrios, G. N. (2005). Plant Pathology (5th ed.). Elsevier Academic Press.
- 6. Strange, R. N., & Scott, P. R. (2005). *Plant Disease: A Threat to Global Food Security*. Annual Review of Phytopathology.
- 7. Lucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). *The Evolution of Fungicide Resistance*. Advances in Applied Microbiology.
- 8. Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature.
- 9. Van Alfen, N. K. (Ed.). (2012). Encyclopedia of Agriculture and Food Systems. Elsevier.
- 10. Horst, R. K. (2013). Westcott's Plant Disease Handbook (7th ed.). Springer.

	PSO	PSO	PSO	PSO			PO		PO	PO	PO	PO
	I	2	3	4	5	6	1	2	3	4	5	6
CO1	3	2	1	2			3	2	1		3	1
CO2	2	3	1				2	3	2	1		
CO3	3	1	2	1			3	1	2	3	1	
CO4	1	2	3				1	3	2	3	2	
CO5	2	1	3	2	3		2	1	3	2	3	1
CO6	3	2	1	3			3	2	1	2	3	2

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

	Internal Exam	Assignmen Project Evaluation		Practical Assessment		
CO1	✓					
CO2	✓	✓				
CO3	✓	✓				
CO4			✓			
CO5				✓		

MBY8EJ 404. MICROBES IN EXTREME ENVIRONMENT

Programme	B. Sc. Mic	robiology							
Course Code	MBY8EJ 4	MBY8EJ 404							
Course Title	Microbes i	Microbes in extreme environment							
Type of Course	Major-Elec	ctive							
Semester	VIII								
Academic Level	400 - 499								
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours				
	4	4	-		60				
Pre-requisites	Nil								
Course Summary	This course delves into the ecological and physiological adaptations of microbes thriving in harsh environments. Students will explore the taxonomy, metabolic strategies, and biotechnological applications of extremophiles.								

Course Outcomes (CO): .

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the ecological importance and basic classifications of extremophiles.	U	С	Internal Exam, End Semester Exam
CO2	Describe the physiological and molecular adaptations that allow extremophiles to thrive in harsh conditions.	U	С	Internal Exam, End Semester Exam
СОЗ	Analyze the applications of extremophiles in biotechnology and industrial processes.	An	С	Internal Exam, End Semester Exam
CO4	Evaluate the potential for extremophiles in future biotechnological applications, including challenges and ethical considerations.	E	С	Internal Exam, End Semester Exam
CO5	Conduct a critical review of current research on extremophiles, synthesizing findings from recent studies.	An	С	Internal Exam, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

Detailed Syllabus:

Module	Unit	Content	Hrs (48+12)	Marks (70)
I	Introd	luction to Extremophiles	12	15
	1	Definition of extremophiles		
	2	Importance of extremophiles		
	3	Classification of extremophiles with examples		
	4	Applications of extremophiles		
	5	Extremophiles in bioremediation and biotechnological applications		
II	Acido	philes and Alkalophiles.	12	15
	6	Acidophiles – Physiology and molecular adaptation		
	7	Applications and examples of acidophiles		
	8	Alkalophiles – Physiology and molecular adaptations		
	9	Applications and examples of alkalophiles		
III	Ther	mophiles, hyperthermophiles and psychrophiles	12	25
	10	Thermophiles - physiology and molecular adaptations		
	11	Applications and distribution of Thermophiles		
	12	Hyperthermophiles - physiology and molecular adaptations		
	13	Applications and distribution of Hyperthermophiles		
	14	Psychrophiles – physiology and molecular adaptation		
	15	Applications and distribution of Psychrophiles		
IV	Halop	hiles and Barophiles	12	15
	16	Halophiles – physiology & molecular adaptations		
	17	Applications and distribution of Halophiles		
	18	Barophiles – physiology & molecular adaptations		
	19	Applications and distribution of Barophiles		
	20	Industrial applications of halophiles and barophiles		
	21	Genetic tools and manipulation of extremophiles		
	22	Future perspectives and challenges in extremophile research		
V	Open	ended	12	
	1	Study on metalophiles, radiophiles, and xenobiotic utilizers		

Books and References:

- 1. Rothschild, L. J., & Mancinelli, R. L. (2001). Life in extreme environments. Reviews in Microbiology.
- 2. Horikoshi, K., Antranikian, G., Bull, A. T., Robb, F. T., & Stetter, K. O. (Eds.). (2011). Extremophiles Handbook. Springer.
- 3. Madigan, M. T., & Marrs, B. L. (1997). Extremophiles. Scientific American.

- 4. Seckbach, J. (Ed.). (2000). Journey to Diverse Microbial Worlds: Adaptation to Exotic Environments. Springer.
- 5. Gerday, C., & Glansdorff, N. (Eds.). (2007). Physiology and Biochemistry of Extremophiles. ASM Press.
- 6. van den Burg, B. (Ed.). (2003). Extremophiles as a Source of Novel Enzymes for Industrial Application. Springer.
- 7. Barton, L. L., & Northup, D. E. (Eds.). (2011). Microbial Ecology. Wiley-Blackwell.
- 8. Cavicchioli, R. (Ed.). (2007). Extremophiles: Microbiology and Biotechnology. Horizon Scientific Press.
- 9. Bell, E. (Ed.). (2012). Life at Extremes: Environments, Organisms and Strategies for Survival. CABI.

СО	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO1	3	2	1				3	1	2		2	
CO2	2	3					2	3	2	1	3	
CO3	1		3		2		1		3	2	2	1
CO4		3		3				3		3		2
CO5			3		3					3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignment	End Semester Examinations
CO1	\checkmark		\checkmark
CO2	✓	√	✓
CO3	✓	>	✓
CO4	√	√	√
CO5	√	√	√

MBY8EJ 405-VIROLOGY AND EMERGING MICROBIAL DISEASES

11221020 100	THOLU	GI III ID DIVI	BITTOIL TO THE	CITODITIE DI	O EDITED ED			
Programme	B. Sc. M	icrobiology						
Course Code	MBY8EJ	405/MBY6E	EJ309					
Course Title	Virology	Virology and Emerging microbial diseases						
Type of Course	Major-El	ective						
Semester	VI	VI						
Academic Level	400-499							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours			
	4	4	-	-	60			
Pre-requisites								
Course Summary	cultivation the transi	This course offers in-depth knowledge on viral isolation, cultivation, and the epidemiology of viral diseases. It focuses on the transmission, treatment, and prevention of viral and emerging microbial diseases, alongside developments in vaccine technology.						

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Describe the general properties of viruses including structure, classification, and cultivation methods.	U	C	Internal Exam, Assignments
CO2	Analyze the pathogenesis, diagnosis, and prophylaxis of key viral infections.	An	С	Assignments, Internal Exam
CO3	Evaluate the public health impact of emerging viral diseases.	E	С	Assignments, Internal Exam, End Semester Exam
CO4	Apply diagnostic techniques for detecting viral infections.	Ap	F	Internal Exam
CO5	Synthesize strategies for the prevention and control of viral diseases including developments in vaccine technology.	С	F	Assignments, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Metacognitive Knowledge (M)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Detailed S Module	Unit	Content	Hrs (48 +12)	Marks (70)
	Gener	ral properties of viruses	12	15
	1	Structure and morphology		
	2	Principles of viral classification		
	3	Different methods of cultivation and isolation of viruses-		
Ι		laboratory requirements for cultivation, embryonated egg inoculation, animal inoculation, permissive and non-permissive hosts or cells, tissue culture cell lines; detection of viral growth in cell culture		
	4	Replication of viruses - lytic and lysogenic cycles		
	5	Viral inclusion bodies - methods of staining and demonstration		
II	Know	ledge about medically important DNA and RNA viruses	12	15
	6	Pathogenesis, laboratory diagnosis and prophylaxis of following infections - small pox, chicken pox, shingles.		
	7	Pathogenesis, laboratory diagnosis and prophylaxis of - infectious mononucleosis, cytomegalo virus		
	8	Pathogenesis, laboratory diagnosis and prophylaxis of - polio, influenza, rabies.		
	9	Pathogenesis, laboratory diagnosis and prophylaxis of - hepatitis, HIV, viral hemorrhagic fever, slow virus diseases.		
	10	Pathogenesis, laboratory diagnosis and prophylaxis of mumps, measles, and rubella		
III	Emers	ging microbial diseases	12	25
	11	SARS and Nipah virus		
	12	Ebola virus		
	13	Zika virus		
	14	Yellow fever and Japanese encephalitis		
	15	Dengue, chikun gunya, swine flue		
IV	Viral	diagnosis	12	15
	16	Collection, preservation, transportation, and processing of viral specimen		
	17	Isolation and identification of specimen for viral diagnosis		
	18	Serological diagnosis of viral infection - Paul Bunnel test, haemagglutination and haemagglutination inhibition test, viral neutralization test, immunofluorescence.		
	19	Principles of immunoblotting techniques - southern and northern blotting		
	20	Principles of Luminescence assay, PCR and its applications		

21 Types of viral vaccines
Role of genetic engineering in vaccine development

V Open Ended 12
Visit to virology laboratories
Data collection related to viral infection outbreaks

Reference books:

- 1. Carter, J., & Saunders, V. (2016). *Virology: Principles and Applications* (2nd ed.). Wiley.
- 2. Racaniello, V. R. (2019). Principles of Virology. ASM Press.
- 3. Knipe, D. M., & Howley, P. M. (Eds.). (2018). *Fields Virology: Emerging Viruses* (7th ed., Vol. 2). Wolters Kluwer Health/Lippincott Williams & Wilkins.
- 4. Modrow, S., Falke, D., Truyen, U., & Schätzl, H. (2019). *Molecular Virology*. Springer.
- 5. Nathanson, N. (Ed.). (2017). Viral Pathogenesis: From Basics to Systems Biology (3rd ed.). Academic Press.
- 6. Zuckerman, A. J., Banatvala, J. E., Schoub, B. D., Griffiths, P. D., & Mortimer, P. (Eds.). (2018). *Principles and Practice of Clinical Virology* (7th ed.). Wiley.

Mapping of COs with PSOs and POs:

8	,											
CO	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	1	2		2	1
CO2	2	3		1			2	3	2	1	3	
CO3	3	2	1				3	2	3	2	2	1
CO4	1	2	3				1	2	3	3		2
CO5	2	1		3		3	2	3	1	2	3	1

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignments	End Semester Exam
CO1	√	√	
CO2	✓	✓	
CO3	√	✓	√
CO4	√		
CO5		✓	✓

MBY8EJ 406-PLANT-DERIVED ANTIMICROBIALS

Programme	B. Sc. Microbiology						
Course Code	MBY8EJ 406	MBY8EJ 406					
Course Title	Plant-Derived Antim	icrobials					
Type of Course	Major-Elective						
Semester	VIII	VIII					
Academic Level	400-499						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	-	60		
Pre-requisites	Nil						
Course	This course delves	into the w	orld of pla	int-derived ar	ntimicrobials,		
Summary	exploring their extrac	tion, mechar	nisms of action	on, and ethical	applications.		

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the historical and current perspectives on the use of plant-derived compounds as antimicrobial agents.	U	С	Internal Exam, End Semester Exam
CO2	Explain the biochemical mechanisms through which plant-derived antimicrobials act against pathogens.	U	С	Assignments, Internal Exam, End Semester Exam
СОЗ	Apply laboratory techniques for extracting and testing the efficacy of plant-derived antimicrobials.	Ap	F	Assignments, Internal Exam, End Semester Exam
CO4	Analyze the role of these antimicrobials in various sectors and their potential in addressing global challenges like antibiotic resistance.	An	С	Assignments, Internal Exam, End Semester Exam
CO5	Evaluate the ethical, environmental, and socio-economic factors influencing the use of plant-derived antimicrobials.	E	С	Assignments, Internal Exam, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Module	led Sylla Unit	Content	Hrs (48+12)	Marks (70)
I	Introdu	action to Plant-Derived Antimicrobials	12	10
	1	Definition and significance of plant-derived antimicrobials		
	2	Historical perspectives		
	3	Importance of plant based antimicrobials in traditional		
		medicines		
	4	Plants with antimicrobial property		
II	Chemi	cal Diversity of Plant-Derived Antimicrobials	12	20
	5	Overview of phytochemicals with antimicrobial properties		
	6	Classification of antimicrobial compounds from plants		
		(phenolics, alkaloids, terpenoids, etc.)		
	7	Plant derived antimicrobial peptides		
	8	Spectral activity against bacteria, fungi, viruses, and parasites		
	9	Sources and distribution		
	10	Extraction techniques		
	11	Purification and isolation		
	12	Factors influencing antimicrobial activity		
III		nisms of Action	12	20
	13	Chemical nature	12	
	14	Target sites and mechanism of action.		
	15	Evolution of resistance mechanisms		
	16	Toxicological concerns and safety assessment		
	17	Determination of minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC)		
IV	Applic	ations of Plant-Derived Antimicrobials	12	20
	18	Medical applications		
	19	Food preservation and safety		
	20	Agricultural applications		
	21	Cosmetics and personal care products		
	22	Synergistic effects and combinational therapies		
	Open I		12	
	•	tion of literature related to plant derived antimicrobials and		
		ze a group discussion on the group and mode of action.		
		students with different plants of medical importance and the		
	entire a	antimicrobial compounds already reported from that plant to		
		ntified and presented.		

Books and References:

- 1. Nicoletti, M. (2007). Medicinal Plants: Chemistry and Properties. Science Publishers.
- 2. Muñoz-Torrero, D. (Ed.). (2009). Plant-Derived Antimicrobials: A Review on Their Antibacterial Mechanisms, Toxicity, and Application. CRC Press.

- 3. Srinivasan, R. V. (2011). Bioactive Compounds from Plants: An Overview. Wiley.
- 4. Brahmachari, G. (Ed.). (2012). Natural Products as Antiviral Agents. Springer.
- 5. Sharma, R. (2013). Phytochemicals: Extraction Methods, Basic Structures and Mode of Action as Potential Chemotherapeutic Agents. Nova Science Publishers.
- 6. Brice, R. (Ed.). (2014). Antimicrobial Agents: Chemistry, Mode of Action, Mechanisms of Resistance, and Clinical Applications. Wiley.
- 7. Buhner, S. H. (2013). *Herbal Antivirals: Natural Remedies for Emerging & Resistant Viral Infections*. Storey Publishing.
- 8. Rao, V., & Rao, L. G. (Eds.). (2009). Phytochemicals as Bioactive Agents. CRC Press.
- 9. Brar, S. K., & Singh, G. (Eds.). (2016). *Pharmacognosy: Fundamentals, Applications and Strategies*. Academic Press.
- 10. Crozier, A., Ashihara, H., & Tomás-Barberán, F. (Eds.). (2006). *Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet.* Wiley.
- 11. Kaur, S., & Singh, G. (Eds.). (2015). *Phytochemicals: A Global Perspective of Their Role in Nutrition and Health*. InTech.

CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO1	3	2	1				3	2	1		2	
CO2	2	3					2	3	2	1	3	
CO3		2	3		1		1	3	3	2	2	1
CO4	1			3	2		1			3		2
CO5			3		3					3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination
CO1	✓		\checkmark
CO2	✓	✓	✓
CO3	✓	✓	✓
CO4	✓	✓	✓
CO5	✓	✓	✓

MBY8EJ 407. DEVELOPMENTAL BIOLOGY

Programme	B. Sc. Microbiology					
Course Code	MBY8EJ 407					
Course Title	Developmental Biolo	gy				
Type of Course	Major-Elective					
Semester	VIII					
Academic Level	400-499					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	A basic understanding	g of biology,	, cell biology	, genetics, an	d embryonic	
	development					
Course	This developmental	biology co	urse compre	hensively ov	verviews the	
Summary	fundamental princip	fundamental principles governing the development of multicellular				
	organisms. Spanning				cell division,	
	differentiation, and m	orphogenesi	s in animals	and plants		

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the key concepts and principles of developmental biology.	U	С	Internal Exam, End Semester Exam
CO2	Understand the evolution of cellular processes in developmental biology.	U	С	Assignments, Internal Exam, End Semester Exam
CO3	Master key developmental concepts like fate maps and stem cells.	U	С	Assignments, Internal Exam, End Semester Exam
CO4	Follow the journey from reproduction to organ formation.	U	С	Assignments, Internal Exam, End Semester Exam
CO5	Grasp how bodies develop and grow from patterns to organs.	U	С	Assignments, Internal Exam, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
Metacognitive Knowledge (M)

Detailed Syllabus:

Module Unit Hrs Marks Content (48+12)(70)I Introduction & Basic Concepts of Developmental Biology 10 10 Historical perspectives 1 3 development: cel1 Cellular processes in division. differentiation, and Morphogenesis Basic Concepts of Development- Fate maps, Commitment 3 3 4 3 Differentiation and Totipotency Morphogenic gradient, Stem cells II Sexual reproduction 10 10 Production of gametes, Fertilization 3 Cleavage and blastulation, Formation of germ layers 3 6 Embryonic Development- Gastrulation, Extraembryonic 4 membranes, Neurulation Ш Morphogenesis and organogenesis in animals 14 25 Cell aggregation and differentiation in Dictyostellium 1 9 Axis and pattern formation in *Drosophila* 1 Vulva formation in *Caenorhabdtis elegans* 10 1 Eye lens induction, Limb development in vertebrates 2 11 12 Heart development 2 13 Kidney development 1 Differentiation of neurons and development of the nervous 14 2 system 15 Development of the reproductive system 2 Metamorphosis, Regeneration & sex determination 2 16 IV Stem Cells and Developmental Genetics 14 25 Apoptosis, Extrinsic pathway of apoptosis, Intrinsic 17 2 pathway of apoptosis, Ageing, Cellular senescence 18 Basics of stem cell biology, Regeneration in different 1 organisms 19 Applications of stem cells in medicine 3 20 Environmental Influences Developmenton Developmental plasticity, Teratogens and developmental disorders, Epigenetic regulation of development 21 Developmental Genetics-Genetic 3 regulation development, Homeotic genes and pattern formation Mutations and developmental disorders V Open Ended- Plant Development Biology 12 Gamete production in Angiosperms, Pollination. Fertilization, Embryonic development, Dormancy, Vegetative growth, Floral signals

Books and References:

- 1. Wolpert, L., Tickle, C., & Arias, A. M. (2015). *Principles of development* (5th ed.). Oxford University Press.
- 2. Gilbert, S. F. (2019). Developmental biology (12th ed.). Sinauer Associates.
- 3. Gilbert, S. F., & Barresi, M. J. F. (2016). *Developmental biology* (11th ed.). Sinauer Associates.
- 4. Slack, J. M. W. (2013). Essential developmental biology (3rd ed.). Wiley-Blackwell.
- 5. Barresi, M. J. F., & Gilbert, S. F. (2018). *Developmental biology* (12th ed.). Sinauer Associates.
- 6. Wolpert, L. (2011). *Developmental biology: A very short introduction*. Oxford University Press.
- 7. Moore, K. L., Persaud, T. V. N., & Torchia, M. G. (2018). *The developing human: Clinically oriented embryology* (11th ed.). Elsevier.

Mapping of COs with PSOs and POs:

СО	PSO1	PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2		1		3		2		1	2
CO2	2	3				2	2	3		3		3
CO3		2	3		1	1	3	2	2	2	1	
CO4	1			3	2	1	1		3	3	2	1
CO5		3		3			3	3		3		3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Examination
CO1	✓		√
CO2	✓	✓	√
CO3	√	✓	√
CO4	✓	✓	√
CO5	√	✓	✓

MINOR COURSES

No	Course	Sem	Code	Title
1	Minor	I	MBY1MN 100	Introduction to Microbiology
2	Minor	I	MBY1MN 101	Microbial Growth
3	Minor	II	MBY2MN 100	Basic Techniques in Microbiology
4	Minor	II	MBY2MN 101	Bacterial infections and Host defense systems
5	Minor	III	MBY3MN 200	Microbial metabolism
6	Minor	III	MBY3MN 201	Applied Microbiology

MBY1CJ 101/ MBY1MN100. INTRODUCTION TO MICROBIOLOGY

Programme	B. Sc. Microbiology				
Course Code	MBY1CJ 101/MBY1	MN100			
Course Title	Introduction to Micro	biology			
Type of Course	Major/Minor				
Semester	Ι				
Academic Level	100 - 199				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	•	2	75
Pre-requisites	Nil				
Course	This introductory cou	rse covers th	e fundamenta	al aspects of m	icrobiology,
Summary	exploring microbial	diversity, st	ructure, func	tion, and its	impacts on
	human and environmental health. It provides students with theoretical				
	knowledge and prac	ctical skills	fundamenta	l for further	studies in
	microbiology and rela	ated fields.			

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the diversity, morphology, and reproduction of bacteria, fungi, and viruses.	U	С	Internal Exam, Assignment, End Semester Examination
CO2	Explain the historical development and scope of microbiology, including the contributions of key scientists.	U	С	Internal Exam, Assignment, End Semester Examination
CO3	Differentiate the fundamental structures of prokaryotic and eukaryotic cells, and describe the major differences.	An	С	Internal Exam, Assignment, End Semester Examination
CO4	Describe the roles of beneficial and harmful microorganisms in various environments.		С	Internal Exam, Assignment, End Semester Examination
CO5	Demonstrate basic microbiological laboratory techniques, including microscopy, staining, and culture methods.	Ap	P	Practical Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Detaile			TT	Mardi
Modul e	Unit	Content	Hrs (45 +30)	Mark s (70)
I	The N	Microbial World	10	15
	1	Bacterial forms and arrangement of cells.		
	2	Morphology of molds and yeasts		
	3	Sexual and asexual reproduction in fungi.		
	4	Viral morphology and replication processes.		
	5	Structure, lytic cycle, and lysogeny of bacteriophages.		
II	Histo	ry of Microbiology	10	15
	6	Overview of microbiology's scope and its historical development.		
	7	Debate of Spontaneous generation vs. Biogenesis.		
	8	Contributions of Anton van Leeuwenhoek, Joseph Lister, Paul Ehrlich, and other pioneers.		
	9	-		
III	Fund	amental Structure of Cell	15	25
	10	General structure of prokaryotic and eukaryotic cells and their differences.		
	11	Structures of archaebacteria and eubacteria.		
	12	Detailed analysis of bacterial ultrastructure (e.g., glycocalyx, capsule).		
	13	Composition and structure of gram-positive and gram-negative cell walls.		
	14	Cell membrane structure, function, and composition in bacteria and archaea.		
	15	Cytoplasmic structures (e.g., ribosomes, inclusion bodies).		
	16	Endospore formation and sporulation stages.		
IV		ficial & Harmful Microorganisms	10	15
	17	Roles of beneficial soil microbes like PGPR and mycorrhizae.		
	18	Biopesticides and biocontrol agents.		
	19	Beneficial microbes in food industries.		
	20	Application of microbes in pharmaceutical industries.		
	21	Overview of pathogenic bacteria, fungi, protozoa, and viruses.		
	22	Impact of microorganisms on human, animal, and plant health.		
V	Pract	ical Applications in Microbiology	30	
	1	Introduction to laboratory instruments and safety precautions.		
	2	Common methods of sterilization.		
	3	Microscope maintenance and usage.		

Books and References:

- 1. Atlas, R. M. (1997). Principles of microbiology (2nd ed). Wm. C. Brown Publishers.
- 2. Black, J. G., & Black, L. J. (2018). Microbiology: Principles and explorations (10th edition). Wiley.
- 3. Frobisher, M. (Ed.). (1974). Fundamentals of microbiology (9th ed). W. B. Saunders Co.
- 4. Gladwin, M., Trattler, B., & Mahan, C. S. (2023). Clinical microbiology made ridiculously simple (Edition 9, in color). MedMaster, Inc.
- 5. Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). Brock biology of microorganisms (Sixteenth edition, global edition). Pearson.
- 6. Michael J. Pelczar, Chan, E. C. S., Noel R. Krieg, & Merna Foss Pelczar. (2024). Microbiology (5th edition). Affiliated East-West Press Private Limited.
- 7. Pommerville, J. (2014). Alcamo's fundamental of microbiology (Tenth edition). Jones and Bartlett India Pvt. Ltd.
- 8. Salle, A. J. (2007). Fundamental principles of bacteriology (Reprint of the 2. ed., 6. impression 1943). Envins Press.
- 9. Stanier, R. Y. (2003). General Microbiology. (5th ed). Macmillan.
- 10. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (Thirteenth edition). Pearson.
- 11. Willey, J. M., Sandman, K., Wood, D. H., & Prescott, L. M. (2023). Prescott's microbiology (Twelfth edition, international student edition). McGraw Hill.

	PSO1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	3	-	3		2	3		3	
CO2	3			2		3		3	3		2	
CO3	3		3			2		3		2	3	
CO4	2	3				2	3	3		2		
CO5		3	3	3					3	3		

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

Course Outcome (CO)	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	✓	✓	✓	
CO2	✓	✓	✓	
CO3	√	✓	✓	
CO4	✓		✓	
CO5				✓

MBY1MN101-MICROBIAL GROWTH

Programme	B. Sc. Microbiology				
Course Code	MBY1MN101				
Course Title	Microbial Growth				
Type of Course	Minor				
Semester	I				
Academic Level	100 - 199				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Nil				
Course	This course introduc	es the funda	mental conce	epts of micro	bial growth,
Summary	exploring the nutrition	onal requirer	nents, enviro	nmental facto	ors affecting
	growth, and the applic	cations of unc	derstanding m	nicrobial grow	th in various
	fields.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand various nutrients for microbial growth.	U	Р	Internal Exam, Assignment, Practical Assessment, End Semester Examination
CO2	Analyze various factors influencing microbial growth.	Ap	P	Internal Exam, Assignment, Practical Assessment, End Semester Examination
CO3	List and analyze various nutrient transport mechanisms.	An	Р	Internal Exam, End Semester, Practical Assessment, Examination
CO4	Implement the knowledge of microbial growth in practical applications.	Ap	Р	Internal Exam, End Semester Examination
CO5	Recognize the application of microbial growth in various fields.	Ap	С	Practical Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Module	Unit	Content	Hrs (45+30)	Marks (70)
I	Micro	obial Nutrition	10	15
	1	Nutritional requirements of bacteria- Major and Minor		
		Elements		
	2	Nutritional Types- Autotrophy, Heterotrophy,		
		Chemotrophy, Phototrophy, Lithotrophy and Organotropy		
	3	Major nutritional groups of bacteria		
	4	Acetogenesis		
	5	Methanogenesis.		
II	Micro	obial growth	10	15
	6	Factors affecting microbial growth. (ph, temperature,		
		oxygen, salinity, radiation etc)		
	7	Classification of microorganisms based on various		
		physical factors.		
	8	Microbial Stress response		
	9	Growth curve and its significance		
III	Nutri	ent transportation	15	25
	10	Diffusion and Facilitated diffusion.		
	11	Active and Passive transport		
	12	Group translocation		
	13	Iron uptake and Siderophores		
	14	Electrogenic and Electro neutral Transport.		
	15	Role of plasma membrane in nutrient transport		
	16	Role of water activity and Osmosis in nutrient transport		
IV	Appli	cation of Microbial growth	10	15
	17	Biotechnology (fermentation processes)		
	18	Food industry (food spoilage, food preservation)		
	19	Environmental Science (Bioremediation)		
	20	Agricultural industry (Biofertilizer, Biopesticides)		
	21	Medicine and Health care (Probiotics and Vaccines)		
	22	Clinical Microbiology (Antimicrobial testing)		
V	Pract	ical Applications in Microbial growth	30	
	1	Growth Curve		
	2	Effect of pH on microbial growth		
	3	Effect of temperature on microbial growth.		

References

- 1. Salle, A. J. (2018). *Fundamentals of Bacteriology*. (Latest ed.). [Publisher Information Required].
- 2. Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. (2019). *Microbiology*. (Latest ed.). McGraw-Hill Education.
- 3. Frobisher, M., Hinsdill, R. D., Crabtree, K. T., & Goodheart, C. R. (2020). *Fundamentals of Microbiology*. (Latest ed.). [Publisher Information Required].

- 4. Stanier, R. Y., Ingraham, J. L., Wheelis, M. L., & Painter, P. R. (2018). *General Microbiology*. (Latest ed.). Macmillan.
- 5. Prescott, L. M., Harley, J. P., & Klein, D. A. (2017). *Microbiology*. (9th ed.). McGraw-Hill Education.
- 6. Brock, T., Madigan, M. T., Martinko, J. M., & Parker, J. (2019). *Brock Biology of Microorganisms* (15th ed.). Pearson.
- 7. Atlas, R. M., & Bartha, R. (2020). *Microbial Ecology: Fundamentals and Applications* (5th ed.). Benjamin Cummings.
- 8. Moat, A. G., Foster, J. W., & Spector, M. P. (2018). *Microbial Physiology* (5th ed.). Wilev.
- 9. Schlegel, H. G., & Zaborosch, C. (2017). *General Microbiology* (7th ed.). Cambridge University Press.
- 10. Singleton, P. (2021). *Bacteria in Biology, Biotechnology, and Medicine* (7th ed.). Wiley.
- 11. Paul, E. L., Atiemo-Obeng, V. A., & Kresta, S. M. (Eds.). (2016). *Handbook of Industrial Mixing: Science and Practice*. Wiley.

I I	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
	PSO1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	3			3		2	3		3
CO2	3		2				3		3	2		2
CO3	3		3				3		2	3		1
CO4	2	3					2	3	3			2
CO5		3	3	3				3	1	2	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

CO	Internal Exam	Assignment	End Semester Examination	Practical Assessment
CO1	√	✓	✓	✓
CO2	✓	✓	✓	✓
CO3	√		✓	✓
CO4	✓		✓	✓
CO5				√

MBY2CJ 101/ MBY2MN100. BASIC TECHNIQUES IN MICROBIOLOGY

Programme	B. Sc. Microbiology						
Course Code	MBY2CJ 101/ MBY2	MBY2CJ 101/ MBY2MN100					
Course Title	Basic Techniques in I	Microbiology	7				
Type of Course	Major/Minor						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Nil						
Course	This preliminary co	ourse introd	uces the ba	asic techniqu	ies used in		
Summary	microbiology. It enab	oles the stude	ents to acqui	re a sound the	eoretical and		
	practical knowledge	on microscop	y techniques	, staining me	thods, media		
	and methods for cult	uring the mi	croorganism	s and culture	preservation		
	strategies.						

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Master the use of various microscopy techniques, including electron, phase contrast, and fluorescence microscopy, to analyze microorganisms.	(U)	(P)	Internal Exam, Assignment, End Semester Examinations
CO2	Execute and differentiate between multiple staining techniques, such as Gram, acid-fast, and capsule staining, to identify and classify microbial structures.	(Ap)	(P)	Internal Exam, Assignment, End Semester Examinations
CO3	Prepare, select, and utilize appropriate culture media for the growth of aerobic and anaerobic microorganisms.	(Ap)	(P)	Internal Exam, End Semester Examinations
CO4	Implement isolation and culture techniques to maintain pure microbial cultures and apply preservation methods for long-term use.	(An)	(P)	Internal Exam, End Semester Examinations
CO5	Demonstrate proficiency in microbiological laboratory techniques through practical application and understanding of	(Ap)	(C)	Practical assessments

theoretical concepts.

Detailed Syllabus:

Module	Unit	Content	Hrs (45 +30)	Marks (70)
I	MICE	ROSCOPY	10	15
	1	Introduction to microscope-resolving power, numerical		
		aperture, oil immersion objective.		
	2	Types of microscopes -bright field, dark field		
	3	Phase contrast, confocal microscopes		
	4	Fluorescent microscopes		
	5	Electron microscopy - TEM and SEM		
	6	Electron microscopy - sample preparation & fixation,		
		labelling & storage of slides.		
II	STAI	NING	10	15
	7	Mechanism of staining - Basic dyes, Acidic dyes.		
		Bacterial smear preparation and fixation.		
	8	Simple Staining, Differential staining- Gram staining,		
		Acid fast staining,		
	9	Staining specific structures-Endospore staining, Negative		
		staining, Capsule staining, Flagellar staining,		
	10	Fungal staining		
	11	Preparation of permanent slides		
III	CULT	ΓURE MEDIA	15	25
	12	Solid and liquid media, simple and complex, synthetic or defined media.		
	13	Selective, enrichment, enriched media		
	14	differential, indicator media, Transport media		
	15	Anaerobic media- thioglycollate medium, Robertson's		
		media.		
	16	Cultivation of anaerobic bacteria -Production of vacuum,		
		displacement of oxygen with other gases, chemical		
		methods, biological methods and reduction of medium.		
IV	CULT	ΓURE METHODS -	10	15
	17	Isolation of microbes- Dilution plating and enrichment		
		technique.		
	18	Pure culture techniques-Streak, spread, pour plate		
		methods		
	19	Stab culture, stroke culture and lawn culture.		
	20	Culture preservation strategies-regular subculture, paraffin		

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

	method, storage in soil, storage in silica gel		
21	Storage at refrigerator or cold room storage, storage by		
	freeze drying and drying, preservation under liquid		
	nitrogen		
22	Microbial culture collections		
Pract	tical Applications in Microbiology	30	
1	Staining procedures for microorganisms		
2	Microscopic observation of microorganisms		
3	Culture media prepartion		
4	Demonstration/research institute visit - dark field, phase contrast, confocal, fluorescent, Electron microscopes		
	22 Pract 1 2 3	21 Storage at refrigerator or cold room storage, storage by freeze drying and drying, preservation under liquid nitrogen 22 Microbial culture collections Practical Applications in Microbiology 1 Staining procedures for microorganisms 2 Microscopic observation of microorganisms 3 Culture media prepartion 4 Demonstration/research institute visit - dark field, phase	21 Storage at refrigerator or cold room storage, storage by freeze drying and drying, preservation under liquid nitrogen 22 Microbial culture collections Practical Applications in Microbiology 1 Staining procedures for microorganisms 2 Microscopic observation of microorganisms 3 Culture media prepartion 4 Demonstration/research institute visit - dark field, phase

Books and References:

- 1. Atlas, R. M. (1997). Principles of microbiology (2nd ed). Wm. C. Brown Publishers.
- 2. Black, J. G., & Black, L. J. (2018). Microbiology: Principles and explorations (10th edition). Wiley.
- 3. Frobisher, M. (Ed.). (1974). Fundamentals of microbiology (9th ed). W. B. Saunders Co.
- 4. Gladwin, M., Trattler, B., & Mahan, C. S. (2023). Clinical microbiology made ridiculously simple (Edition 9, in color). MedMaster, Inc.
- 5. Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., & Brock, T. D. (2022). Brock biology of microorganisms (Sixteenth edition, global edition). Pearson.
- 6. Michael J. Pelczar, Chan, E. C. S., Noel R. Krieg, & Merna Foss Pelczar. (2024). Microbiology (5th edition). Affiliated East-West Press Private Limited.
- 7. Pommerville, J. (2014). Alcamo's fundamental of microbiology (Tenth edition). Jones and Bartlett India Pvt. Ltd.
- 8. Salle, A. J. (2007). Fundamental principles of bacteriology (Reprint of the 2. ed., 6. impression 1943). Envins Press.
- 9. Stanier, R. Y. (2003). General Microbiology. (5th ed). Macmillan.
- 10. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An introduction (Thirteenth edition). Pearson.
- 11. Willey, J. M., Sandman, K., Wood, D. H., & Prescott, L. M. (2023). Prescott's microbiology (Twelfth edition, international student edition). McGraw Hill.

	PSO	PSO	PSO	PSO4	PSO	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
	l	2	3		5							
CO1	3		2	3	3		3		2	3	3	
CO2	3		3	2	3		3		3	2	3	2
CO3	3		3		2		2		3		3	3
CO4	2	3	3		2		2	3	3		2	
CO5	2		2	3	3		3		2	3	3	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- Endsemester Exam (70%)

со	Internal Exam	Assignmen t	End Semester Examinations	Practical Assessment
CO1	✓	✓	✓	✓
CO2	✓	√	✓	✓
CO3	✓		✓	✓
CO4	✓		✓	✓
CO5				√

MBY2MN101-BACTERIAL INFECTIONS AND HOST DEFENSE SYSTEMS

Programme	B. Sc. Microbiology							
Course Code	MBY2MN 101							
Course Title	Bacterial infections a	Bacterial infections and Host defense systems						
Type of Course	Minor							
Semester	II							
Academic Level	101-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Nil							
Course	This course offers an	introductory	exploration	of the host def	ense systems			
Summary	of the human body.	It covers the	ne basics of	immunology	and various			
	bacterial infections the	hat affect hu	mans, focus	ing on the me	echanisms of			
	infection, disease trar	nsmission, an	d the body's	immunologic	al responses.			

Course Outcomes (CO):

CO	CO Statement	Cognitiv	Knowledge	Evaluation
		e Level*	Category#	Tools used
CO1	Describe the basics of microbial infections, focusing on bacterial pathogens, and understand the human body's primary defense mechanisms against these pathogens.	U	С	Internal Exam, End Semester Exam, Practical Assessments
CO2	Demonstrate practical skills in microbiological techniques such as staining, culture methods, and identifying bacterial pathogens.	Ap	P	Assignments, Internal Exam, Practical Assessments
CO3	Explain the mechanisms of immune response to bacterial infections, including the role of antibodies and the complement system.	U	С	Assignments, Internal Exam, End Semester Exam
CO4	Analyze case studies on bacterial infections to understand disease transmission, symptoms, and preventive measures.	An	С	Case Study Evaluation, Internal Exam
CO5	Evaluate the effectiveness of different antimicrobial treatments and vaccines against bacterial pathogens through theoretical and practical approaches.	Е	P	Assignments, Internal Exam, Practical Assessments

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
Metacognitive Knowledge (M)

Detailed Syllabus:

Module Unit Content Hrs Marks (45+30)(70)I Introduction to infection and diseases 10 10 Types of infections 2 Types of diseases. 3 Sources of infections 4 Mode of transmission of infection. Reservoirs, carriers and vectors of communicable diseases. 6 Role of WHO in pandemic alerts II **Bacterial infections** 15 **20** Staphylococcus aureus 8 Streptococci and Neisseria 9 Clostridium botulinum and Clostridium tetani 10 Salmonella typhi and Vibrio cholerae Mycobacterium tuberculosis 11 Ш **Defense system** 10 20 12 Immunity- Innate and acquired 13 Active and passive, Natural and artificial. Local immunity and Herd immunity 14 Disease prevention and control-controlling the reservoir, interruption of transmission, Immunisation etc. 15 Principles of active, passive and combined immunisation. Indian Immunisation schedule. Cells and organs of immune system 16 IV 10 **Basics of immunology** 20 Antigens and its type 17 18 Antibody structure and its classification 19 Antigen Antibody reactions 20 Complement System Monoclonal and polyclonal antibodies. Hubridoma 21 Hypersensitivity and autoimmunity V **Practical Applications** 30 1. IMViC reactions of bacteria 2. Widal Test/ASO Test/RA test 3. Blood grouping 4. Differential count of Leucocytes

Books and References:

- 1. Abbas, A. K., & Lichtman, A. H. (2010). *Basic Immunology: Functions and Disorders of the Immune System*. Saunders Elsevier.
- 2. Janeway, C. A., et al. (2011). *Immunobiology: The Immune System in Health and Disease*. Garland Science.
- 3. Roitt, I., Brostoff, J., & Male, D. (2001). Immunology. Mosby.

- 4. Brooks, G. F., et al. (2012). Medical Microbiology. McGraw-Hill.
- 5. Kuby, J. (2013). *Immunology* (7th ed.). W.H. Freeman and Company.
- 6. Ingraham, J. L., & Ingraham, C. A. (2004). *Introduction to Microbiology* (3rd ed.). Brooks/Cole.
- 7. Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). *Introductory Mycology* (4th ed.). Wiley.
- 8. Ananthanarayan, R., & Paniker, C. K. J. (2013). *Textbook of Microbiology* (9th ed.). Orient Longman.

СО	PSO1	PSO2	PSO3	PSO4	DCOE	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO	P301	P302	P3U3	P304	P3U3	F300	POI	PUZ	PU3	PU4	PU3	PUO
CO1	3		2		1		3	1	2	1	2	1
CO2	2	3		2	1		2	3	3	2	3	1
CO3		2	3	1		1	1	3	2	2	2	1
CO4	1			3	2		1	3	3	3	3	2
CO5			3		3			3		3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

со	Internal Exam	Assignment	Practical Assessments	End Semester Examination
CO1	✓		√	√
CO2	✓	✓	✓	
CO3	✓	✓		✓
CO4	✓			✓
CO5	✓	✓	✓	

MBY3CJ 202. MICROBIAL METABOLISM

Programme	B. Sc. Microbiology								
Course Code	MBY3CJ 202/MBY3	MN 200							
Course Title	Microbial Metabolism	Microbial Metabolism							
Type of Course	Major/Minor								
Semester	III								
Academic Level	200 - 299								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Nil								
Course	This introductory co	urse covers	the fundame	ntal aspects of	of Microbial				
Summary	Metabolism. It invol	ves converti	ng nutrients	into energy a	and essential				
	biomolecules like	ATP, crucia	l for micro	organism su	rvival. Key				
	pathways like glycol	ysis and the	Krebs cycle	drive energy	production.				
	Microbes adapt to div	verse enviror	nments by uti	ilizing various	s carbon and				
	nitrogen sources. U	nderstanding	g microbial	metabolism	is vital for				
	biotechnology, indust	try, and envii	ronmental so	lutions.					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain the nutritional requirements and types of bacteria based on energy, carbon, and electron sources.	U	F	Internal Exam, Assignment, End Semester Exam
CO2	Describe key metabolic pathways, including respiration and fermentation in microbial systems.	U	С	Internal Exam, Assignment, End Semester Exam
СОЗ	Analyze chemoheterotrophic and chemolithotrophic metabolism, focusing on energy production mechanisms.	An	С	Internal Exam, End Semester Exam
CO4	Evaluate microbial metabolic strategies in environmental adaptation and biotechnological applications.	Е	М	Internal Exam, End Semester Exam
CO5	Perform and interpret experiments related to microbial growth curves, biofilm formation, and metabolic pathways.	Ap	P	Practical Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M) **Detailed Syllabus:**

Module	Unit	Content	Hrs (45+30)	Marks (70)
I	Nutrit	ional requirements of bacteria	10	15
	1	C, electron, energy, and minerals. Nutritional types of		
		bacteria- based on the requirement and their combinations		
	2	Modes of bacterial nutrition.		
	3	Transport of nutrients by bacteria		
	4	Passive, active and group translocation		
	5	Symport, antiport and uniport, electrogenic and		
		electroneutral transport, transport of iron		
II	Chemo	oheterotrophic Metabolism - Aerobic Respiration	10	15
	6	Concept of aerobic respiration		
	7	Sugar degradation pathways i.e. EMP, ED, Pentose		
		phosphate pathway. TCA cycle.		
	8	Electron transport chain		
	9	Components of respiratory chain, comparison of		
		mitochondrial and bacterial ETC, electron transport		
		phosphorylation		
III	Chemo	oheterotrophic Metabolism- Anaerobic respiration and	15	20
		ntation		
	10	Anaerobic respiration with special reference to dissimilatory		
		nitrate reduction		
	11	Fermentation - Alcohol fermentation		
	12	Pasteur effect;		
	13	Lactate fermentation		
	14	Homofermentative		
	15	Concept of linear and branched fermentation pathways.		
	16	Heterofermentative pathways		
IV	Chemo	olithotrophic and Phototrophic Metabolism	10	20
	17	Introduction to aerobic and anaerobic chemolithotrophy		
	18	Hydrogen oxidation (definition and reaction) and		
		methanogenesis (definition and reaction).		
	19	Introduction to phototrophic metabolism		
	20	Groups of phototrophic microorganisms		
	21	Anoxygenicvs. oxygenic photosynthesis with reference to		
		photosynthesis in green bacteria		
	22	Purple bacteria and cyanobacteria.		
V	Practi	cal Applications in Microbiology	30	
	1	Growth curve of bacteria		
	2	Carbohydrate fermentation by different microbes		+
	3	Thermal death point, Thermal death time		+
	3	Thermal death point, Thermal death time		+

Reference:

- Madigan, M. T., & Martinko, J. M. (2014). *Brock Biology of Microorganisms* (14th ed.). PrenticeHall International Inc.
- Moat, A. G., & Foster, J. W. (2002). Microbial Physiology (4th ed.). John Wiley & Sons.
- Reddy, S. R., & Reddy, S. M. (2005). *Microbial Physiology*. Scientific Publishers India.
- Gottschalk, G. (1986). Bacterial Metabolism (2nd ed.). Springer Verlag.
- Stanier, R. Y., Ingrahm, J. I., Wheelis, M. L., & Painter, P. R. (1987). *General Microbiology* (5th ed.). McMillan Press.

Mapping of COs with PSOs and POs:

	PSO1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	3		3	2	3		3		
CO2	3		2	3	3	3	3	2	1			
CO3	3	3		2	3	2	3	1			2	
CO4	2	3		3		3	3	2	2			
CO5		3	3	3		1	2	3	3			

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

	Internal Exam	Assignment	Practical Assessment	End Semester Exam
CO1	√	✓		√
CO2	√	✓		✓
CO3	√			✓
CO4	√			✓
CO5			√	

MBY3MN201-APPLIED MICROBIOLOGY

Programme	B. Sc. Microbiology								
Course Code	MBY3MN201	MBY3MN201							
Course Title	APPLIED MICROBIOLOGY								
Type of Course	Minor								
Semester	111								
Academic Level	200-299								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites									
Course Summary	This course introduces stude								
		water, food, and industrial microbiology. Students will learn about microbial interactions with							
	the environment, methods	for controlling	microbial grow	th, and the role	of microbes in				
	industrial processes.								

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools
	CO Statement	Level*	Category#	used
CO1	Understand the significance of air, water, and food microbiology in public health.	U	С	Internal Exam, Assignments
CO2	Describe the microbial processes and their control in industrial microbiology.	U	С	Internal Exam, Assignments, Practical Assessments
СОЗ	Apply techniques for analyzing and controlling microbial contamination in various environments.	Ap	P	Practical Assessments, Project Evaluation
CO4	Analyze methods of food preservation and the role of microorganisms in food spoilage and foodborne diseases.	An	С	Internal Exam, End Semester Exam
CO5	Evaluate the impact of microbial biotechnology in the development of industrial products.	Е	С	Internal Exam, Project Evaluation

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Detailed Syllabus:

Module	Unit	Content	Hrs (45+30)	Marks (70)
	Air m	icrobiology	6	
T	1	Air microflora- sources, factors affecting air microflora	1	
I	2	Enumeration of microorganisms in air- settling under gravity, centrifugation, impingement, filtration, electrostatic precipitation.	3	

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

	3	Air borne diseases - bacterial, fungal and viral	2	
II	Water	12	15	
		Factors affecting microbial population in natural water-	2	
		temperature, light, hydrogen concentration, pressure,		
		salinity, nutrients, turbidity.		
	-	Purification of water - aeration, sedimentation, coagulation, flocculation, sand filtration.	3	
		Wate water treatment - primary, secondary and tertiary	3	
		stages	J	
		Disinfection of drinking water	1	
		Bacteriological techniques for examination of water potability- MPN	1	
	9	Indicator organisms, BOD	2	
III		nicrobiology	14	25
		Food as a substrate for microorganisms	1	
		Microorganisms important in food microbiology - molds,	2	
		yeast, bacteria.		
		Contamination of foods	2	
		Spoilage of food - chemical changes caused by	2	
		microorganisms		
		Spoilage of milk, meat and fish	3	
		Methods of food preservation - physical and chemical	2	
		preservatives.		
***		Food poisoning - bacterial	2	1
IV		rial microbiology	13	15
		Advantages of microbial processs over chemical process	1	
		Fermentor - basic function, structure and working	2	
		Culture systems - batch, continuous anf fed-batch	5	
		Production of - penicillin, vitamin-B12, citric acid and baker's yeast, SCP	3	
	21	Steroid biotransformation	1	
	22	Downstream process	3	
V	Practic	al Applications in applied microbiology	30	
	1	Study of air microflora		
	2	Water potability test - MPN method		
		BOD		
		Aerobic mesophilic count of milk and fish		
	-	MBRT		

Reference Books:

- 1. Brock, T. D., Madigan, M. T., Martinko, J. M., & Parker, J. (2020). *Brock Biology of Microorganisms* (16th ed.). Pearson.
- 2. Singleton, P., & Sainsbury, D. (2020). *Dictionary of Microbiology and Molecular Biology* (4th ed.). Wiley.
- 3. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). *Microbiology: An Introduction* (13th ed.). Pearson.
- 4. Prescott, L. M., Harley, J. P., & Klein, D. A. (2018). *Microbiology* (9th ed.). McGraw-Hill Education.
- 5. Atlas, R. M. (2010). Principles of Microbiology (2nd ed.). Mosby.
- 6. Madigan, M. T., & Martinko, J. M. (2015). *Brock Biology of Microorganisms* (15th ed.). Pearson.

Mapping of COs with PSOs and POs:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	1	2	1		2	1	3		3	2
CO2	3	1	2		2		3	2	2	1	3	1
CO3	1	2	3			1	2	3	2	3	2	
CO4		3	1	3			1	2	3	2	1	3
CO5	2		3	1	3			1	2	3	3	2

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (10%)
- Practical Assessment (20%)
- End semester Exam (70%)

CO	Internal Exam	Assignments	Practical Assessments	End Semester Examination
CO1	✓	√		✓
CO2	√	√	✓	✓
CO3			√	✓
CO4	√		√	✓
CO5	✓			✓

GENERAL FOUNDATION COURSES

No	Course	Sem	Code	Title
1	GFC-MDC	I	MBY1FM 105	Microorganisms in Daily life
2	GFC-MDC	II	MBY2FM 106	Applied Microbiology
3	GFC-VAC	III	MBY3FV 108	Microbial soild waste management
4	GFC-VAC	IV	MBY4FV 110	Fermented Foods
5	GFC-SEC	V	MBY5FS 112	Entrepreneurial Microbiology
6	GFC-SEC	VI	MBY6FS 113	Clinical Microbiology

MBY1FM 105-MICROORGANISMS IN DAILY LIFE

Programme	B. Sc. Microbiology								
Course Code	MBY1FM 105								
Course Title	Microorganisms in Daily life								
Type of Course	MDC	MDC							
Semester	Ι								
Academic Level	100-199								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	3	3	-	-	45				
Pre-requisites	Nil								

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe the fundamental characteristics and classifications of microorganisms.	U	F	Internal Exam, End Semester Exam
CO2	Explain the role of microorganisms in human health, including their impact on disease and immunity.	U	С	Internal Exam, Assignments
CO3	Discuss the beneficial applications of microorganisms in food production, biotechnology, and industry.	U	С	Assignments, End Semester Exam
CO4	Evaluate the environmental impact of microorganisms in ecosystems, biodegradation, and waste management.	An	С	Internal Exam, End Semester Exam
CO5	Identify and analyze the challenges and future prospects of microbial applications in addressing global issues.	An	С	Assignments, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

	Content	Hrs (33+12)	Marks (70)
Intro	duction to Microbiology	5	10
1	The Microbial World: An overview of microorganism		
	types and their roles.		
2	Cellular Structures of Microorganisms: Differences		
	between prokaryotes and eukaryotes.		
3			
	and gene functions.		
4	Microbial Growth: Factors affecting microbial growth and		
	reproduction.		
5	Environmental Microbiology: Roles of microorganisms in		
	ecosystems.		
		10	20
Micro			
6	Pathogenic Microorganisms: Bacteria, viruses, and fungi		
	that cause diseases.		
7	Antibiotics and Antibiotic Resistance: Mechanisms and		
	implications.		
8	The Human Microbiome: Beneficial effects of		
9	Immunology Basics: How the body defends itself against microbial infections.		
10	Vaccines: Role of microorganisms in vaccine		
	development.		
11	Emerging Infectious Diseases: New challenges in		
	microbial infections.		
Appli	ed Microbiology	10	20
12	Food Microbiology: Microorganisms in food production		
	and spoilage.		
13	Industrial Microbiology: Use of microbes in the production		
	of chemicals and pharmaceuticals.		
14	Agricultural Microbiology: The role of microbes in		
	agriculture and soil fertility.		
15	Bioenergy: Microbial production of biofuels.		
16	Bioremediation: Microorganisms used in pollution control		
	and cleanup.		
17	Bioremediation of oil spills and heavy metal contamination		
Ethic		8	20
			+
10			
	1 2 3 4 5 Micro 6 7 8 9 10 11 12 13 14 15 16 17	types and their roles. Cellular Structures of Microorganisms: Differences between prokaryotes and eukaryotes. Basic Microbial Genetics: Introduction to microbial DNA and gene functions. Microbial Growth: Factors affecting microbial growth and reproduction. Environmental Microbiology: Roles of microorganisms in ecosystems. Microorganisms and Human Health Pathogenic Microorganisms: Bacteria, viruses, and fungi that cause diseases. Antibiotics and Antibiotic Resistance: Mechanisms and implications. The Human Microbiome: Beneficial effects of microorganisms on human health. Immunology Basics: How the body defends itself against microbial infections. Waccines: Role of microorganisms in vaccine development. Emerging Infectious Diseases: New challenges in microbial infections. Applied Microbiology Pood Microbiology: Use of microbes in the production and spoilage. Industrial Microbiology: Use of microbes in the production of chemicals and pharmaceuticals. Agricultural Microbiology: The role of microbes in agriculture and soil fertility. Bioenergy: Microbial production of biofuels. Bioremediation: Microorganisms used in pollution control and cleanup. Ethical and Social Implications of Microbiology	The Microbial World: An overview of microorganism types and their roles. Cellular Structures of Microorganisms: Differences between prokaryotes and eukaryotes. Basic Microbial Genetics: Introduction to microbial DNA and gene functions. Microbial Growth: Factors affecting microbial growth and reproduction. Environmental Microbiology: Roles of microorganisms in ecosystems. Microganisms and Human Health Pathogenic Microorganisms: Bacteria, viruses, and fungi that cause diseases. Antibiotics and Antibiotic Resistance: Mechanisms and implications. The Human Microbiome: Beneficial effects of microorganisms on human health. Immunology Basics: How the body defends itself against microbial infections. Diamicroorganisms on human health. Emerging Infectious Diseases: New challenges in microbial infections. Applied Microbiology Food Microbiology: Microorganisms in food production and spoilage. Industrial Microbiology: Use of microbes in the production of chemicals and pharmaceuticals. Agricultural Microbiology: The role of microbes in agriculture and soil fertility. Bioremediation: Microorganisms used in pollution control and cleanup. Bioremediation of oil spills and heavy metal contamination Ethical and Social Implications of Microbiology Biotechnology in Microbiology: Genetic modification of

	19	Bioethics: Ethical issues in the manipulation of microbial life.		
	20	Public Health: Microbiology in the context of public health policy.		
	21	Microorganisms in Biowarfare: Historical and current perspectives.		
	22	Future of Microbiology: Innovations and upcoming research fields.		
V	Open	Ended	12	
	1			

- 1. Atlas, R. M., & Bartha, R. (2021). *Microbial ecology: Fundamentals and applications* (5th ed.). Benjamin Cummings.
- 2. Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2020). *Brock biology of microorganisms* (16th ed.). Pearson.
- 3. Tortora, G. J., Funke, B. R., & Case, C. L. (2021). *Microbiology: An introduction* (14th ed.). Pearson Education.
- 4. Willey, J. M., Sherwood, L. M., & Woolverton, C. J. (2017). *Prescott's microbiology* (10th ed.). McGraw-Hill Education.
- 5. Black, J. G. (2018). Microbiology: Principles and explorations (10th ed.). Wiley.

Mapping of COs with PSOs and POs:

СО	PSO1	PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1				3	2	1		2	
CO2	2	3		1			2	3	2	1	3	
CO3	1		3	2			1		3	2	2	1
CO4		1	2	3				2		3	1	2
CO5				3	2	1		1	2		3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

СО	Internal Exam	Assignment	End Semester Exam
CO1	✓		✓
CO2	✓	✓	✓
CO3	✓	✓	✓
CO4		✓	✓
CO5	✓	✓	✓

MBY2FM 106. APPLIED MICROBIOLOGY

Programme	B. Sc. Microbiology						
Course Code	MBY2FM106						
Course Title	APPLIED MICROB	IOLOGY					
Type of Course	MDC						
Semester	II						
Academic Level	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	3	3	-		45		
Pre-requisites							
Course Summary	This course provides focusing on the appli processes. Students ecology, the principal applications.	cation of mid will gain for	crobes in food undational ki	d, air, water, a nowledge abo	nd industrial ut microbial		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe the types and roles of microorganisms in air, understanding their sources, distribution, and methods of sampling.	U	С	Internal Exam, Assignments
CO2	Explain the ecological and microbiological aspects of aquatic environments, including water purification processes.	U	С	Internal Exam, Assignments
CO3	Analyze the factors influencing microbial growth in food and discuss methods of food preservation.	An	С	Internal Exam, End Semester Exam
CO4	Outline the basic principles and applications of industrial microbiology, focusing on fermentors and industrially important microorganisms.	U	С	Internal Exam, Assignments
CO5	Evaluate the impact of microorganisms on food substrates, detailing the processes of spoilage and fermentation.	An	С	Internal Exam, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed S	-		T	
Module	Unit	Content	Hrs	Marks
			(33+12)	(50)
	Micro	biology of air	5	10
	1	Atmospheric layers, organisms in air, distribution and		
		sources		
I	2	Indoor and outdoor air; droplet nuclei, aerosol and		
		infectious dust		
	3	Microbiological sampling of air -gravity slide, plate		
		exposure and filtration		
II	Aquat	tic microbiology	8	10
	4	Distribution of microorganisms in aquatic environment		
		- fresh water, estuarine and marine water systems		
	5	Factors influencing growth and distribution -		
		temperature, light, turbidity etc		
	6	Purification of water - aeration, sedimentation,		
		coagulation, flocculation, sand filtration		
	7	Disinfection of drinking water		
	8	Bacteriological techniques for examination of water		
	9	Concept of indicator organisms		
III	Food	microbiology	10	15
	10	Food as a substrate for microorganisms- types of		
		microorganisms in food		
	11	Sources of contamination of foods		
	12	Factors influencing microbial growth in food - extrinsic		
		and intrinsic		
	13	Microbial examination of food- viable colony count		
	14	Fermented foods - bread, idli,cheese		
	15	Spoilage of different foods - meat, fish and egg		
	16	Methods of food preservation - physical and chemical		
	10	preservatives.		
IV	Indust	trial microbiology	10	15
1,	17	Fermentor - basic function, structure and working	10	10
	18	Types of fermentors - batch, fed-batch and continuous		
	19	Industrially important microorganisms		
	20	Primary screening techniques		
	21	Secondary screening techniques		
	<u>1</u>	Production of - penicillin, vitamin-B12, and baker's		
	22	yeast		
V		Ended	12	
V		study analysis- Food/water infection outbreaks	14	
		uality management strategies		
	Discu	ssion on fermented food products		

Reference Boks:

- 1. Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2017). *Brock Biology of Microorganisms* (15th ed.). Pearson Education.
- 2. Willey, J., Sherwood, L., & Woolverton, C. J. (2017). *Prescott's Microbiology* (10th ed.). McGraw-Hill Education.
- 3. Tortora, G. J., Funke, B. R., & Case, C. L. (2018). *Microbiology: An Introduction* (13th ed.). Pearson Education.
- 4. Atlas, R. M. (2010). Principles of Microbiology (2nd ed.). Mosby Year Book.
- 5. Singleton, P., & Sainsbury, D. (2020). *Dictionary of Microbiology and Molecular Biology* (4th ed.). Wiley.
- 6. Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. (1993). *Microbiology: Concepts and Applications*. McGraw-Hill.

Mapping of COs with PSOs and POs:

CO	PSO ₁	PSO ₂	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3						3		2		2	1
CO2	2						2		2		3	
CO3	3	3					3		3	3	2	
CO4		3		3			1	3		3		2
CO5			3		3					3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignments	End Semester Examination
CO1	✓	✓	
CO2	✓	√	
CO3	✓		✓
CO4	✓	✓	
CO5	✓		✓

Programme	B. Sc. Microbiology							
Course Code	MBY3FV 108	MBY3FV 108						
Course Title	Microbial soild waste	managemen	ıt					
Type of Course	VAC							
Semester	III							
Academic Level	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	3	3	-	-	45			
Pre-requisites	Nil							
Course Summary	This course introdu microbial solid was microbiology. Studen waste, their sources, innovative microbial- recovery.	te managem ts will gain l impacts on th	ent with a knowledge alone environme	focus on endout various to the tender of ten	nvironmental ypes of solid n health, and			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand basic concepts and principles of solid waste management.	U	С	Quizzes, Internal Exam
CO2	Identify different types of waste and describe their impacts on the environment and public health.	U	F	Assignments, Internal Exam
СОЗ	Describe basic waste treatment, recycling, and resource recovery methods.	U	С	Assignments, End Semester Exam
CO4	Recognize the importance of policies, community involvement, and education in waste management.	U	С	Internal Exam, End Semester Exam
CO5	Discuss future trends and innovations in waste management.	U	F	Quizzes, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
Metacognitive Knowledge (M)

Detail	<u>ed Syll</u>	abus:		
Module	Unit	Content	Hrs (33+12)	Marks (70)
I	Intro	duction to Solid Waste Management	5	10
	1	Overview of Solid Waste Management - Definitions and		
		importance.		
	2	Types of Solid Waste - Characteristics and sources.		
	3	Environmental Impact of Solid Waste - Basics of ecological		
		effects.		
	4	Health Impacts of Solid Waste - Introduction to public health		
		concerns.		
	5	Principles of Sustainable Waste Management - Introduction		
		to the 3Rs (Reduce, Reuse, Recycle).		
II	Solid	Waste Collection and Treatment	10	20
	6	Waste Collection Techniques - Basic methods and practices.		
	7	Waste Segregation and Storage - Importance and methods.		
	8	Overview of Waste Treatment Methods - Landfill,		
		Incineration, and Composting.		
	9	Recycling Basics - Processes and benefits.		
	10	Introduction to Resource Recovery - Simple techniques for		
		material recovery.		
	11	Composting - Basic principles and methods.		
III	Solid	Waste Policies and Public Health	10	20
	12	Waste Policy and Regulation - Overview of governmental		
		policies.		
	13	Community Involvement in Waste Management - Role of		
		public participation.		
	14	Waste Management and Public Health - Basic connections		
		and preventive measures.		
	15	Case Studies on Waste Management Strategies - Simple		
		examples from various regions.		
	16	Challenges in Waste Management - Common issues and		
TX7	TD 4	potential solutions.	0	20
IV		re Trends in Waste Management	8	20
	17	Innovations in Recycling - New trends in material recycling.		
	18	Advances in Biological Treatment Techniques - Basic		
	10	introduction to new biotechnologies. Phytoremediation - Using plants in waste management		
	19	Phytoremediation - Using plants in waste management		
	20	(simple overview).		
	20	Role of Education in Waste Management - Importance of		
	21	awareness and training. Future Challenges and Opportunities - Discussion on		
	<u> </u> 41			
	22	upcoming trends. Payiow and Course Wren up. Pagen of key generate and		
	22	Review and Course Wrap-up - Recap of key concepts and forward look.		
		101 watu 100k.		

V	Open	Ended	12	
	1	PPreparation of composting pits/Biogas plants/Landfills etc		
	2	Waste management policies and execution-discussion		

- 1. Tchobanoglous, G., Theisen, H., & Vigil, S. (1993). *Integrated Solid Waste Management: Engineering Principles and Management Issues*. McGraw-Hill.
- 2. Vesilind, P. A., Worrell, W., & Reinhart, D. (2002). Solid Waste Engineering. Brooks/Cole.
- 3. Williams, P. T. (2005). Waste Treatment and Disposal. John Wiley & Sons.
- 4. Diaz, L. F., de Bertoldi, M., Bidlingmaier, W., & Stentiford, E. (2007). *Compost Science and Technology*. Elsevier.
- 5. Kreith, F., & Tchobanoglous, G. (2002). *Handbook of Solid Waste Management*. McGraw-Hill Professional.
- 6. Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development Series. World Bank.

Mapping of COs with PSOs and POs:

СО	PSO1	PSO2	PSO3	PSO 4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1		1			3	2	1		2	1
CO2	2	3	1				2	3	2	1	1	
CO3	1	2	1	1			1	2	1	2	1	
CO4	2	1	2		1		2	1	2	1	2	1
CO5	1	1	1	2			1	1	1	2	2	2

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

CO	Internal Exam	Assignment	End Semester Exam
CO1	✓		✓
CO2	✓	✓	✓
CO3	✓	✓	✓
CO4	✓	✓	✓
CO5			✓

MBY4FV110. FERMENTED FOODS

Programme	B. Sc.	Microbiology							
Course Code	MBY4	FV110							
Course Title	Ferme	Fermented Foods							
Type of Course	VAC	VAC							
Semester	IV	IV							
Academic Level	200-29	200-299							
Course Details	Cred	Lecture per week	Tutorial	Practical	Total Hours				
	it		per week	per week					
	3	3	-	-	45				
Pre-requisites	Nil								
Course	This c	course offers an int	troduction to the	ne world of fer	mented foods,				
Summary	highlig	ghting their histor	ical significand	ce, health bene	efits, and the				
	micro	organisms that play	a crucial role in	their production	. Students will				
	learn a	about the production	n processes of	various fermente	ed dairy, meat,				
	vegeta	ble products, and	beverages, w	ith a focus or	n the applied				
	microl	piological aspects.							

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the basic concepts of fermented foods and their health benefits.	U	С	Internal Exam, Assignments
CO2	Describe the production and microorganisms involved in fermented dairy products.	U	С	Internal Exam
СОЗ	Outline the fermentation processes for meat and vegetable products.	U	С	Internal Exam, Assignments
CO4	Explain the production methods and microbiology of fermented beverages and cereals.		С	Assignments, End- Semester Exam
CO5	Assess the nutritional benefits and microbiological aspects of various fermented foods.	U	С	Internal Exam, Assignments, Projects

^{*-} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
#- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
Metacognitive Knowledge (M)

<u>Detailed S</u> Module	Unit	Content	Hrs (33+12)	Marks (50)
I	Basic	concepts of fermented food	5	10
	1	History of fermented foods		
	2	Properties of fermented food.		
	3	Different microorganisms involved in		
		fermentation		
	4	Starter and non-starter cultures		
	5	Health Benefits of fermented foods		
II	Ferm	ented Dairy products	10	15
	6	Cheese		
	7	Buttermilk, Curd		
	8	Yogurt		
	9	Sour cream, Kefir		
	10	Brief account of Microorganisms involved and steps in the production		
	11	Nutritional Benefits of fermented dairy products		
III	Ferm	ented Meat and vegetables	8	10
	12	Fermented sausage		
	13	Sauerkraut		
	14	Kimchi		
	15	Fermented pickles		
	16	Brief account of Microorganisms involved and		
		steps in the production		
IV	Ferm	ented Beverages and Cereal products	10	15
	17	Beer fermentation Types. Microorganisms involved and steps in production.		
	18	Wine fermentation.		
	19	Fermented Cereal products- Bread		
	20	Idli		
	21	Types of Microorganisms involved and steps in production.		
	22	Definition of Probiotics and prebiotics.		
V		Ended	12	
		to food processing industries		
		y and analysis on fermented food products in the		

- 1. Hutkins, R. W. (2019). *Microbiology and Technology of Fermented Foods* (2nd ed.). Wiley-Blackwell.
- 2. Adams, M. R., & Moss, M. O. (2018). *Food Microbiology* (4th ed.). Royal Society of Chemistry.
- 3. Frazier, W. C., & Westhoff, D. C. (2016). *Food Microbiology* (5th ed.). McGraw-Hill Education.
- 4. Robinson, R. K. (2017). Dairy Microbiology Handbook (3rd ed.). Wiley.

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO6	PO 1	PO 2	PO 3	PO 4	PO 5	PO6
CO1	3		2				2		1			
CO2		3		2			1	2				
CO3	1		3					1	2			
CO4			1	3	2			3	1	2		
CO5		1			3	2	1		2	3		

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High **Assessment Rubrics:**

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

	Internal	Assignmen	Project	End	Semester
	Exam	t	Evaluation	Examinations	
CO1	√	\		✓	
CO2	✓			✓	
CO3	✓	✓		✓	
CO4		✓		✓	
CO5	√	√	√	✓	

MBY5FS 112. ENTREPRENEURIAL MICROBIOLOGY

Programme	B. Sc. Microbiology								
Course Code	MBY5FS 112								
Course Title	Entrepreneurial Micro	Entrepreneurial Microbiology							
Type of Course	SEC								
Semester	V	V							
Academic Level	300 - 399								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
	per week per week Hour								
	3	3	-	-	45				
Pre-requisites	Knowledge in Basic I	Microbiology	Techniques	and Manager	ial				
	Economics								
Course	This course aims to b								
Summary	students how to turn								
	covers the journey								
	creating sustainable	and cost-	effective so	lutions using	g microbial				
	technologies.								

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
	Understand the entrepreneurial			Internal
CO1	landscape and the role of microbiology	U	С	Exam,
	in entrepreneurship.			Assignments
				Internal
CO2	Analyze the process of product	An	C	Exam, End
CO2	development from microbial resources.	All	C	Semester
				Exam
	Evaluate market dynamics and			Case Studies,
CO3	strategies for commercializing	An	C	Internal
	microbiological products.			Exam
	Discuss the regulatory and ethical			Internal
CO4	frameworks relevant to microbial	U	C	Exam,
	entrepreneurship.			Assignments
	Critically examine aggs studies of			Internal
CO5	Critically examine case studies of successful microbial enterprises.	E	C	Exam, Case
	successful inicrobial enterprises.			Studies

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	bus: Content	Hrs (33 +12)	Marks (50)
Ι	Entre	preneurship in Microbiology	5	8
	1	Entrepreneurial society: Development and activity		
	2	Institutions involved in entrepreneurial development		
	3	Government contributions to entrepreneurs		
	4	Risk assessment in entrepreneurship		
	5	Entrepreneur development frameworks		
II		bial Products and Innovation	5	8
	6	Bread baking and fermentation processes		
	7	Rye bread, San Francisco dough Bread		
	8	Idli and dosa fermentation details		
	9	Fermented fish products: Ngari, Hentak, Tungtap, Gnuchi		
	10	Patenting: Basics and history		
Ш	Cultiv	vation and Utilization of Microbial Processes	10	14
	11	Mushroom cultivation techniques		
	12	Cultivation of Agaricus campestris and Agaricus		
		bisporus		
	13	Alcoholic products and their cultural significance		
	14	Production processes of Apong, Kodokojaanr, Xajpani		
	15	Grape wine and other fruit wines		
IV		nced Entrepreneurial Practices in Microbiology	13	20
	16	Market analysis and commercialization strategies		
	17	Intellectual property rights in microbiology		
	18	Fermentation economics		
	19	Bioentrepreneurship: Scope, challenges, and opportunities		
	20	Innovation and sustainable business models in microbiology		
	21	Case studies of successful microbiology-based businesses		
	22	Future trends and opportunities in microbial entrepreneurship		
V		al and Regulatory Considerations in Microbiology	12	
		t filing for microbial products		

- 1. Bell JR (2010) Handbook of bioentrepreneurship (Book Review). N Engl J Entrep 13:1–2
- 2. Bogoro SE (2015) Entrepreneurship for development. Convocation lecture delivered at the 2nd convocation ceremony of the Kaduna. State University Kaduna
- 3. Eniola AA (2018) Entrepreneur-SME manager traits and sources of financing. In: Ratten V, Dana LP, Honyenuga B (eds) African entrepreneurship: challenges and opportunities for doing business, 1st edn. Springer, Cham
- 4. Life Science Austria (2017) The international Biotech & Medtech Business Plan Handbook Austria Wirtschafts service GesellschaftmbH
- 5. Prescott LM, Harley JP, Klein DA (2005) Microbiology, 6th edn. McGraw Hill Publishers, New York. pp. 2 and 12
- 6. Rama VS (2009) Job prospects in microbiology.
- 7. Shimasaki CD (2009) The business of bioscience what goes into making a biotechnology product? Springer, pp 9–26
- 8. Steven MF, Uma SK (2014) Licensing the technology: biotechnology commercialization strategies using university and Federal labs. In: Biotechnology entrepreneurship. Elsevier, pp 185–206
- 9. Stanbury, P.F, and Whitekar. A. (1999), Principles of Fermentation Technology, 2nd Edition. Butterworth-Heinemann: Oxford.
- 10. Stockholm, K.T.H., Sven-OlofEnfors, and Lena Haggstrom. (2000), Bioprocess Technology: Fundamentals and Applications, Royal Institute of Technology: Sweden.
- 11. Ashton Acton, Q., (2012). Biological Pigments— Advances in Research and Application. Scholarly Editions: Atlanta, Georgia.

Mapping of COs with PSOs and POs:

СО	PS O1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1		2		2	1	3		2	
CO2	3	2		1	3		3	2	2	1	3	
CO3	1	3		2		3	1	3	3	2	3	2
CO4		2	3		1	2		3	2	3	1	3
CO5	3		2	3		1	3	2	3	3	3	3

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

apping of Cos to Assessment Rubbles.									
CO	Internal Exam	Assignmen ts	Case Studies	End Semester Examination					
CO1	✓	✓		✓					
CO2	✓			✓					
CO3	✓		✓						
CO4	✓	√		✓					
CO5	√		√						

MBY6FS 113. CLINICAL MICROBIOLOGY

Programme	B. Sc. Microbiology							
Course Code	MBY6FS 113							
Course Title	Clini	cal Microbiology						
Type of Course	SEC							
Semester	VI							
Academic Level	100 -	199						
Course Details	Cre	Lecture per week	Tutorial	Practical	Total Hours			
	dit		per week	per week				
	3 45							
Pre-requisites	Nil							
Course Summary	This course introduces the fundamentals of clinical microbiology, emphasizing laboratory safety, diagnostic techniques, pathogen identification, and understanding the microbial etiology of diseases. It equips students with the knowledge to perform and interpret microbiological tests and to understand the clinical implications of microbial infections.							

Course Outcomes (CO):.

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Identify the basic principles of laboratory safety and biological agent classification.	U	F	Quizzes, Internal Exam
CO2	Describe standard practices for specimen collection, transport, and processing.	U	F	Assignments, Internal Exam
СОЗ	Recognize the normal microbial flora and its role in human health and disease.	U	С	Assignments, Practical Assessments
CO4	Distinguish between various types of infectious diseases using clinical examples.	U	F	Internal Exam, End Semester Exam
CO5	Outline basic diagnostic techniques used in clinical microbiology.	U	F	Assignments, End Semester Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Metacognitive Knowledge (M)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Detailed S		Content		
Module	Unit	Hrs (33+12)	Marks (70)	
I	Microb	biology laboratory safety	5	15
	1	Biological Safety Cabinets; Biocontainment,		
		Biosafety Levels; Biosafety guidelines		
	2	biosafety concerns at the level of individuals,		
		institutions		
	3	Laboratory and associated infections		
	4	Good microbiological practices		
	5	Classification of biological agents based on hazards.		
		Mailing of biohazardous materials		
II	Diagno	ostic cycle	10	15
	6	General concepts for specimen collection, transport		
		and processing		
	7	Infection control, Emerging infections		
	8	Quality assurance & quality control in microbiology,		
		Accreditation of laboratories		
	9	Normal microbial flora of the human body		
III	Etiolog	gy, pathogenesis and laboratory diagnosis	10	25
	10	Blood Stream infections		
	11	Respiratory Tract infections		
	12	Central Nervous System infections		
	13	Gastrointestinal Tract infections		
	14	Urinary Tract infections & Genital Tract infections		
	15	Sexually transmitted diseases.		
	16	Nosocomial infections.		
IV	Infection	ons of different sites	8	15
	17	Skin, soft tissue and wound infections		
	18	Burn infections. Infections of sinuses, bone and bone		
		marrow.		
	19	Infections of eye and ear		
	20	Pyogenic infections		
	21	Infections in immunocompromised and		
		immunodeficient patients		
	22	Infections in foetus and neonates.		
V	Open I		12	
	1	Serodiagnosis of infectious diseases		
	2	Molecular techniques in diagnostic microbiology.		
	3	Automation in Microbiology		
	4	Laboratory control of antimicrobial therapy		
	5	Immunoprophylaxis,		
	6	Immunity in infections		

- 1. Lennette, E. H., Balows, A., Hausler, W. J., Jr., & Shadomy, H. J. (Eds.). (1985). Manual of clinical microbiology (4th ed.). American Society for Microbiology.
- 2. Blair, J. E., Lennette, E. H., & Truant, J. P. (1970). Manual of clinical microbiology. American Society for Microbiology.
- 3. Gradwohl, R. B. H., Sonnenwirth, A. C., & Jarett, L. (1980). Gradwohl's clinical laboratory methods and diagnosis (8th ed.). Mosby.
- 4. Topley, W. W. C., Wilson, G. S., Parker, M. T., & Collier, L. H. (1990). Topley and Wilson's principles of bacteriology, virology and immunology (8th ed.). Edward Arnold.
- 5. Mukherjee, K. L. (2010). Medical laboratory technology (2nd ed.). Tata McGraw-Hill Education.
- 6. Sood, R. (1999). Medical laboratory technology: Methods and interpretations (5th ed.). Jaypee Brothers Medical Publishers.
- 7. Cheesbrough, M. (2006). District laboratory practice in tropical countries (2nd ed.). Cambridge University Press.
- 8. Mackie, T. J., McCartney, J. E., & Collee, J. G. (1989). Mackie & McCartney practical medical microbiology (13th ed.). Churchill Livingstone.
- 9. Black, J. G. (1999). Microbiology: Principles and explorations (4th ed.). Prentice Hall International.
- 10. Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. (2006). Kuby immunology (6th ed.). W.H. Freeman.
- **11.** Forbes, B. A., Sahm, D. F., Weissfeld, A. S., & Bailey, W. R. (2007). Bailey & Scott's diagnostic microbiology (12th ed.). Elsevier Mosby.

Mapping of COs with PSOs and POs:

	PSO	PSO	PSO	PSO	PSO	PSO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	2	1		1			2	1			1	
CO2	1	2		1			1	2	1			
CO3	2	1	1				1	1	1	2	1	
CO4	1	2	2				1	2	1	1		1
CO5	1	1	2	1			1	1	2	1	1	

Correlation Levels: 1-Slightly / Low, 2-Moderate / Medium, 3-Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Continuous Assessment (30%)
- Practical Assessment
- End semester Exam (70%)

	Internal Exam	Assignmen t	End Semester Exam
CO1	√		√
CO2	√	✓	✓
CO3	√	✓	
CO4			✓
CO5		✓	√